
The Last Five Years of Energy 
Consumption Research

Gustavo Pinto

My personal, biased view of

@gustavopinto
gpinto@ufpa.br

mailto:gpinto@ufpa.br?subject=










Uh oh

@gustavopinto



Go away 
bad  

apps! 

Respect 
by battery!

We need  

energy 
efficient 

apps!
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I have no idea on how to 
make this code more energy 

efficient 😢



2013

2M+ Users 

5M+ Questions 

10M+ Answers 

50GB+ of data MSR’14

2014
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Final Data

Automatic Filter
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5M Questions Manual Filter

Final Data

Automatic Filter

615 Questions
1,197 Answers
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5M Questions Automatic Filter Manual Filter

Final Data
from 2008 to 2013

325 Questions
558 Answers

Base Group



Research Questions
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• RQ1: What are the most common energy-related 
problems faced by software developers? 

• RQ2: What are the main causes for software 
energy consumption problems? 

• RQ3: What solutions do developers employ or 
recommend to save energy?



Energy-Related Problems
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• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — Q/A)
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“I want to measure the energy consumption of my own 
application (which I can modify) [...] on Windows CE 5.0 and 

Windows Mobile 5/6. Is there some kind of API for this?”

• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — Q/A)
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“Are there any s/w high level design considerations 
[...] to make the code as power efficient as possible?”

• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — Q/A)
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• Measurements 
(59/97 — Q/A) 

• General 
Knowledge  
(40/84 — Q/A) 

• Code design 
(36/133 — Q/A)

• Context-specific 
(83/110 — Q/A) 

• Noise (107/134 — 
Q/A)

— Highest popularity 
— Highest A per Q ratio 
— Highest success rate

Energy-Related Problems



Energy-Related Causes
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• Unnecessary 
resource usage 
(49 occurrences) 

• Fault GPS behavior 
(42 occurrences) 

• Background 
activities (40 
occurrences)

• Excessive 
synchronization 
(32 occurrences) 

• Background 
wallpapers (17 
occurrences) 

• Advertisement (11 
occurrences)
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• Unnecessary 
resource usage 
(49 occurrences) 

• Fault GPS behavior 
(42 occurrences) 

• Background 
activities (40 
occurrences)

• Excessive 
synchronization 
(32 occurrences) 

• Background 
wallpapers (17 
occurrences) 

• Advertisement (11 
occurrences)

“to have a background application that monitors device usage, 
identifies unused/idle resources, and acts appropriately”
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• Unnecessary 
resource usage 
(49 occurrences) 

• Fault GPS behavior 
(42 occurrences) 

• Background 
activities (40 
occurrences)

• Excessive 
synchronization 
(32 occurrences) 

• Background 
wallpapers (17 
occurrences) 

• Advertisement (11 
occurrences)

“When there are bugs that keep the GPS turned on 
too long they go to the top of the list to get fixed”



Energy-Related Solutions
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• Keep IO to a 
minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)
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• Keep IO to a 
minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)

“do not flood the output stream with null values”
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• Keep IO to a 
minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)

“Don’t transfer say 1 file, and then wait for a bit to do another 
transfer. Instead, transfer right after the other.”



Do researchers 
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• Keep IO to a 
minimum (29 
occurrences) 

• Bulk operations 
(24 occurrences) 

• Avoid polling (17 
occurrences)

• Hardware 
Coordination (11 
occurrences) 

• Concurrent 
Programming (9 
occurrences) 

• Race to idle (7 
occurrences)



2015

 29

4Mi+ Users 

19Mi+ Repositories

MSR’15
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19M Repos
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19M Repos

Query on 
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19M Repos

Query on 
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19M Repos

2,189 Commits

Query on 
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19M Repos Automatic Filter

1,005 Commits

Query on 
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19M Repos Manual FilterAutomatic Filter

Query on 
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19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873 
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2
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19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873 
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2

All commits 
were, at least, 

double-checked!
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19M Repos Manual FilterAutomatic Filter

371  
Energy-Aware 

CommitsQuery on 



Research Questions

 41

• RQ1. What are the solutions that developers use to 
save energy in practice?

• RQ2. What software quality attributes may be 
given precedence over energy consumption?

• RQ3. How are energy-saving solutions distributed 
over the software stack?



RQ1: Solutions
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• Frequency and voltage scaling (50 occurrences) 

• Use power efficient library/device  (45 occurrences) 

• Disabling features or devices (42 occurrences) 

• Energy bug fix (26 occurrences) 

• Low power idling (22 occurrences) 

• Timing out (16 occurrences)
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RQ2: Quality Attributes
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• Correctness (7 occurrences) 

• Responsiveness (6 occurrences) 

• Performance (3 occurrences) 

• No actual power saving (3 occurrences) 

• Miscellaneous (3 occurrences)
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• Correctness (7 occurrences) 

• Responsiveness (6 occurrences) 

• Performance (3 occurrences) 

• No actual power saving (3 occurrences) 

• Miscellaneous (3 occurrences)

RQ2: Quality Attributes
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• Responsiveness (6 occurrences) 

• Responsiveness (6 occurrences) 

• Performance (3 occurrences) 

• No actual power saving (3 occurrences) 

• Miscellaneous (3 occurrences)

RQ2: Quality Attributes



RQ3: Software Stack
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88 Commits

Application includes 
embedded applications, 
desktop application, and 

mobile applications.

RQ3: Software Stack
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88 Commits

Application includes 
embedded applications, 
desktop application, and 

mobile applications.

42 Embedded

RQ3: Software Stack
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88 Commits

Application includes 
embedded applications, 
desktop application, and 

mobile applications.

42 Embedded

21 Arduino

RQ3: Software Stack
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50 Commits

Libraries/Utilities include scripts 
and embedded libraries. 

RQ3: Software Stack
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50 Commits

Libraries/Utilities include scripts 
and embedded libraries. 

41 scripts

RQ3: Software Stack
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142 Commits

Operating System includes 
Kernels, Embedded Kernels, 

Drivers and Firmwares

RQ3: Software Stack
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142 Commits

Operating System includes 
Kernels, Embedded Kernels, 

Drivers and Firmwares

69 Kernels

RQ3: Software Stack
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142 Commits

Operating System includes 
Kernels, Embedded Kernels, 

Drivers and Firmwares

69 — OS Kernel
54 — Drivers

RQ3: Software Stack



2014
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• Explicit threading (the 
Thread-style): Using the 
java.lang.Thread class

• Thread pooling (the 
Executor-style): Using the 
java.util.concurrent.Executor 
framework

• Working Stealing (the 
ForkJoin-style): Using the 
java.util.concurrent.ForkJoin 
framework

OOPSLA’14
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• Embarrassingly parallel: spectralnorm, sunflow, 
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks
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• Embarrassingly parallel: spectralnorm, sunflow, 
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

Micro-benchmarks

DaCapo benchmarks
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Experimental Environment

A 2×16-core AMD CPUs, running Debian 
Linux, 64GB of memory, JDK version 1.7.0 
11, build 21, “ondemand” governor
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Experimental Environment

A 2×16-core AMD CPUs, running Debian 
Linux, 64GB of memory, JDK version 1.7.0 
11, build 21, “ondemand” governor
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Experimental Environment

A 2×16-core AMD CPUs, running Debian 
Linux, 64GB of memory, JDK version 1.7.0 
11, build 21.
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Experimental Environment

A 2×16-core AMD CPUs, running Debian 
Linux, 64GB of DDR3 1600 memory, and 
JDK version 1.7.0 11, build 21.



Methodology
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Starting from the 
Thread-style



Methodology
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Then to the 
Executors-style



Methodology
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And finally, the 
ForkJoin-style



Energy Consumption When Varying the 
Number of Threads
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The Λ Curve
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The Λ Curve
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The Λ Curve
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More cores idle
CPU frequency 
at a lower level

The Λ Curve
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More cores idle
CPU frequency 
at a lower level

More threads used, 
program completes sooner
The greater the ratio 
between speedup and 
power, the steeper the \

The Λ Curve



Copying vs Sharing
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Copying vs Sharing
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Copying



Copying vs Sharing
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Copying

Sharing



Copying vs Sharing

 75

Copying

Sharing
±15% of energy savings!



2016
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ICSME’16

Bad programmers worry about 
the code. Good programmers 

worry about data structures and 
their relationships.  

Linus Tolvards



In case you are a Java 
programmer…

 77
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List<Object> lists = …;

• ArrayList
• LinkedList
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List<Object> lists = new ArrayList<>();
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List<Object> lists = new ArrayList<>();

Thread
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List<Object> lists = new ArrayList<>();

Thread



 82

• ArrayList
• LinkedList

• Vector
• Collections.synchronizedList()
• CopyOnWriteArrayList

List<Object> lists = …;

Non Thread-Safe

Thread-Safe



�83

List<Object> lists = new Vector<>();



�84

List<Object> lists = new Vector<>();

Thread



�85

Thread

Thread-safe!

List<Object> lists = new Vector<>();
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Thread

{

}
…

List<Object> lists = new Vector<>();
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Thread

{

}
…

List<Object> lists = new Vector<>();
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List<Object> lists = new CopyOnWriteArrayList<>();
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Thread
Thread-safe!

List<Object> lists = new CopyOnWriteArrayList<>();



List<Object> lists = new CopyOnWriteArrayList<>();

�90

{

}

Thread
Thread-safe!
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List<Object> lists = …;

• ArrayList
• LinkedList

• Vector
• Collections.synchronizedList()
• CopyOnWriteArrayList

Non Thread-Safe

Thread-Safe
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List<Object> lists = …; 

Set<Objects> sets = …; 

Map<Object, Object> maps = …;
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List<Object> lists = …; 

Set<Objects> sets = …; 

Map<Object, Object> maps = …;



 94

List<Object> lists = …; 

Set<Objects> sets = …; 

Map<Object, Object> maps = …;



16 Collections
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List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8
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List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

Non thread-safe
Thread-safe



16 Collections
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List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

Java 7
Java 8



16 Collections
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List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

x 3 Operations
Traversal Insertion Removal



2 Environments
AMD CPU: A 2×16-core, running Debian, 2.4 GHz, 
64GB of memory, JDK version 1.7.0 11, build 21.
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Intel CPU: A 2×8-core (32-cores w/ hyper-threading), 
running Debian, 2.60GHz, with 64GB of memory, JDK 
version 1.7.0 71, build 14.



2 Environments
AMD CPU: A 2×16-core, running Debian, 2.4 GHz, 
64GB of memory, JDK version 1.7.0 11, build 21.
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Intel CPU: A 2×8-core (32-cores w/ hyper-threading), 
running Debian, 2.60GHz, with 64GB of memory, JDK 
version 1.7.0 71, build 14.

Hardware-based energy measurement

Software-based energy measurement
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Traversal Insertion Removal

Intel CPU

AMD CPU

Traversal Insertion Removal

Lists
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ArrayList Vector

Lists

Collections.synchronizedList()
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Lists

ArrayList Vector
Collections.synchronizedList()

Energy (Joules)
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Lists

ArrayList Vector

Energy (Joules) Power (Watts)

Collections.synchronizedList()
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Lists

ArrayList Vector

Energy (Joules) Power (Watts)

Collections.synchronizedList()



Traversal Insertion Removal

Intel CPU

AMD CPU
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Traversal Insertion Removal

Lists
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Traversal Insertion Removal

Intel CPU

AMD CPU
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Traversal Insertion Removal

Lists
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Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal
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Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal
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Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal
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Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal
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Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

Less energy than the non thread-safe  
implementation!



Case Study

 113
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Tomcat
> A web server 
> More than 170K lines of Java code 
> More than 300 Hashtables
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Tomcat

Xalan
> Parses XML in HTML documents 
> More than 188K lines of Java code 
> More than 140 Hashtables

> A web server 
> More than 170K lines of Java code 
> More than 300 Hashtables
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For each Hashtable 
instance, change it for 
a ConcurrentHashMap 

one. Do it again for 
ConcurrentHashMapV8

Task:
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Tomcat

Hashtable to CHM: -12.21%  
Hashtable to CHM8: -17.82% 
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Tomcat Xalan

Hashtable to CHM: -12.21%  
Hashtable to CHM8: -17.82% 

Hashtable to CHM: -5.82%  
Hashtable to CHM8: -9.32% 
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So, lets change all Hashtable 
instances to ConcurrentHashMap!

Not so fast, young padawan…
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Hashtable ConcurrentHashMap 

Map  implements
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Hashtable ConcurrentHashMap 

Cloneable   Map  implements
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Hashtable ConcurrentHashMap 

Cloneable   Map  

// works fine

implements

Map<X,Y> obj = new Hashtable<>(); 
obj.clone();
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Hashtable ConcurrentHashMap 

Map<X,Y> obj = new Hashtable<>(); 
obj.clone();

Cloneable   Map  

// works fine

// compiler error

implements

Map<X,Y> obj = new ConcurrentHashMap<>(); 
obj.clone();



 124

Hashtable ConcurrentHashMap 

Cloneable   Map  

// works fine

// compiler error

implements

Danny Dig

Opportunity for improving 
refactoring tools! 

Map<X,Y> obj = new Hashtable<>(); 
obj.clone();

Map<X,Y> obj = new ConcurrentHashMap<>(); 
obj.clone();



2017

 125
ASE’17

What are the 
most common 
bottlenecks in 
Java parallel 

computations?



Modern Java applications run on 
parallel architectures

java.lang.Thread

• Widely used 
• Low level API 
• Error prone

• Well used 
• High Level API 
• User friendly

java.util.concurrent.Executors
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Why 
ForkJoin?

Work Stealing

1 2 3 4

7 3 1

n

n

ForkJoin Task

4

9
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13

6

12

11
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2

ForkJoin Worker

@gustavopinto



ForkJoin 
Applications

Our corpus of data

+

@gustavopinto

Application 
Programmers

System 
Programmers



Understanding 
Parallelism 
Bottlenecks v0

@gustavopinto

{ …



Understanding 
Parallelism 
Bottlenecks v0

For each version, we measured execution time 
and energy consumption

Intel CPU: A 2×8-core (32-cores w/ hyper-threading), 
running Debian, 2.60GHz, with 64GB of memory, JDK 
version 1.7.0 71, build 14.

JRapl: Software-based energy measurement
@gustavopinto

{ …
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Bottleneck #1: Centralized pooling

actor

actors process their own messages

there is no side effect
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Bottleneck #1: Centralized pooling

actor

actors process their own messages

actors exchange, but do not share 
the same message

there is no side effect

@gustavopinto

mailbox
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a b c d e f g ht1 =

t1

t2

t3

t2 = first half
t3 = second half

make global

@gustavopinto
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Overcoming 
Parallelism 
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =

t1

t2
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Automating Bottleneck #2: Copy on Fork
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Patching Bottleneck #2: Copy on Fork

7/9 of 
projects that 

replied 
have 

accepted  
the PR
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Next?

CACM’2017

Better tool support

Books, cookbooks, guidelines

Refactoring
Testing
Debugging
Visualization
Estimation
….
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