
The Last Five Years of Energy
Consumption Research

Gustavo Pinto

My personal, biased view of

@gustavopinto
gpinto@ufpa.br

mailto:gpinto@ufpa.br?subject=

Uh oh

@gustavopinto

Go away
bad

apps!

Respect
by battery!

We need

energy
efficient

apps!

@gustavopinto

@gustavopinto

@gustavopinto

@gustavopinto

I have no idea on how to
make this code more energy

efficient 😢

2013

2M+ Users

5M+ Questions

10M+ Answers

50GB+ of data MSR’14

2014

 13

5M Questions Manual Filter

Final Data

Automatic Filter

 14

5M Questions Manual Filter

Final Data

Automatic Filter

615 Questions
1,197 Answers

 15

5M Questions Automatic Filter Manual Filter

Final Data
from 2008 to 2013

325 Questions
558 Answers

Base Group

Research Questions

 16

• RQ1: What are the most common energy-related
problems faced by software developers?

• RQ2: What are the main causes for software
energy consumption problems?

• RQ3: What solutions do developers employ or
recommend to save energy?

Energy-Related Problems

 17

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

 18

“I want to measure the energy consumption of my own
application (which I can modify) [...] on Windows CE 5.0 and

Windows Mobile 5/6. Is there some kind of API for this?”

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

 19

“Are there any s/w high level design considerations
[...] to make the code as power efficient as possible?”

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 — Q/A)

 20

• Measurements
(59/97 — Q/A)

• General
Knowledge
(40/84 — Q/A)

• Code design
(36/133 — Q/A)

• Context-specific
(83/110 — Q/A)

• Noise (107/134 —
Q/A)

— Highest popularity
— Highest A per Q ratio
— Highest success rate

Energy-Related Problems

Energy-Related Causes

 21

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

 22

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

“to have a background application that monitors device usage,
identifies unused/idle resources, and acts appropriately”

 23

• Unnecessary
resource usage
(49 occurrences)

• Fault GPS behavior
(42 occurrences)

• Background
activities (40
occurrences)

• Excessive
synchronization
(32 occurrences)

• Background
wallpapers (17
occurrences)

• Advertisement (11
occurrences)

“When there are bugs that keep the GPS turned on
too long they go to the top of the list to get fixed”

Energy-Related Solutions

 24

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

 25

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

“do not flood the output stream with null values”

 26

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

“Don’t transfer say 1 file, and then wait for a bit to do another
transfer. Instead, transfer right after the other.”

Do researchers
agree?

 27

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

Do researchers
agree?

 28

• Keep IO to a
minimum (29
occurrences)

• Bulk operations
(24 occurrences)

• Avoid polling (17
occurrences)

• Hardware
Coordination (11
occurrences)

• Concurrent
Programming (9
occurrences)

• Race to idle (7
occurrences)

2015

 29

4Mi+ Users

19Mi+ Repositories

MSR’15

 30

19M Repos

 31

19M Repos

Query on

 32

19M Repos

Query on

 33

19M Repos

2,189 Commits

Query on

 34

19M Repos Automatic Filter

1,005 Commits

Query on

 35

19M Repos Manual FilterAutomatic Filter

Query on

 36

19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2

 37

19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2

 38

19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2

 39

19M Repos Manual FilterAutomatic Filter

Commits
dh7h3
md8ja
j287h
dij873
dj827h
os837
82uan
28a08
2ja82
d0hk0
j29yd
a7jf9
aio92
hnna2

All commits
were, at least,

double-checked!

 40

19M Repos Manual FilterAutomatic Filter

371
Energy-Aware

CommitsQuery on

Research Questions

 41

• RQ1. What are the solutions that developers use to
save energy in practice?

• RQ2. What software quality attributes may be
given precedence over energy consumption?

• RQ3. How are energy-saving solutions distributed
over the software stack?

RQ1: Solutions

 42

• Frequency and voltage scaling (50 occurrences)

• Use power efficient library/device (45 occurrences)

• Disabling features or devices (42 occurrences)

• Energy bug fix (26 occurrences)

• Low power idling (22 occurrences)

• Timing out (16 occurrences)

RQ1: Solutions

 43

• Frequency and voltage scaling (50 occurrences)

• Use power efficient library/device (45 occurrences)

• Disabling features or devices (42 occurrences)

• Energy bug fix (26 occurrences)

• Low power idling (22 occurrences)

• Timing out (16 occurrences)

RQ2: Quality Attributes

 44

• Correctness (7 occurrences)

• Responsiveness (6 occurrences)

• Performance (3 occurrences)

• No actual power saving (3 occurrences)

• Miscellaneous (3 occurrences)

 45

• Correctness (7 occurrences)

• Responsiveness (6 occurrences)

• Performance (3 occurrences)

• No actual power saving (3 occurrences)

• Miscellaneous (3 occurrences)

RQ2: Quality Attributes

 46

• Responsiveness (6 occurrences)

• Responsiveness (6 occurrences)

• Performance (3 occurrences)

• No actual power saving (3 occurrences)

• Miscellaneous (3 occurrences)

RQ2: Quality Attributes

RQ3: Software Stack

 47

 48

88 Commits

Application includes
embedded applications,
desktop application, and

mobile applications.

RQ3: Software Stack

 49

88 Commits

Application includes
embedded applications,
desktop application, and

mobile applications.

42 Embedded

RQ3: Software Stack

 50

88 Commits

Application includes
embedded applications,
desktop application, and

mobile applications.

42 Embedded

21 Arduino

RQ3: Software Stack

 51

50 Commits

Libraries/Utilities include scripts
and embedded libraries.

RQ3: Software Stack

 52

50 Commits

Libraries/Utilities include scripts
and embedded libraries.

41 scripts

RQ3: Software Stack

 53

142 Commits

Operating System includes
Kernels, Embedded Kernels,

Drivers and Firmwares

RQ3: Software Stack

 54

142 Commits

Operating System includes
Kernels, Embedded Kernels,

Drivers and Firmwares

69 Kernels

RQ3: Software Stack

 55

142 Commits

Operating System includes
Kernels, Embedded Kernels,

Drivers and Firmwares

69 — OS Kernel
54 — Drivers

RQ3: Software Stack

2014

 56

• Explicit threading (the
Thread-style): Using the
java.lang.Thread class

• Thread pooling (the
Executor-style): Using the
java.util.concurrent.Executor
framework

• Working Stealing (the
ForkJoin-style): Using the
java.util.concurrent.ForkJoin
framework

OOPSLA’14

 57

• Embarrassingly parallel: spectralnorm, sunflow,
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

 58

• Embarrassingly parallel: spectralnorm, sunflow,
n-queens

• Leaning parallel: xalan, knucleotide, tomcat

• Leaning serial: mandelbrot, largestImage

• Embarrassingly serial: h2

Benchmarks

Micro-benchmarks

DaCapo benchmarks

 59

Experimental Environment

A 2×16-core AMD CPUs, running Debian
Linux, 64GB of memory, JDK version 1.7.0
11, build 21, “ondemand” governor

 60

Experimental Environment

A 2×16-core AMD CPUs, running Debian
Linux, 64GB of memory, JDK version 1.7.0
11, build 21, “ondemand” governor

 61

Experimental Environment

A 2×16-core AMD CPUs, running Debian
Linux, 64GB of memory, JDK version 1.7.0
11, build 21.

 62

Experimental Environment

A 2×16-core AMD CPUs, running Debian
Linux, 64GB of DDR3 1600 memory, and
JDK version 1.7.0 11, build 21.

Methodology

 63

Starting from the
Thread-style

Methodology

 64

Then to the
Executors-style

Methodology

 65

And finally, the
ForkJoin-style

Energy Consumption When Varying the
Number of Threads

 66

 67

The Λ Curve

 68

The Λ Curve

 69

The Λ Curve

 70

More cores idle
CPU frequency
at a lower level

The Λ Curve

 71

More cores idle
CPU frequency
at a lower level

More threads used,
program completes sooner
The greater the ratio
between speedup and
power, the steeper the \

The Λ Curve

Copying vs Sharing

 72

Copying vs Sharing

 73

Copying

Copying vs Sharing

 74

Copying

Sharing

Copying vs Sharing

 75

Copying

Sharing
±15% of energy savings!

2016

 76
ICSME’16

Bad programmers worry about
the code. Good programmers

worry about data structures and
their relationships.

Linus Tolvards

In case you are a Java
programmer…

 77

 78

List<Object> lists = …;

• ArrayList
• LinkedList

 79

List<Object> lists = new ArrayList<>();

 80

List<Object> lists = new ArrayList<>();

Thread

 81

List<Object> lists = new ArrayList<>();

Thread

 82

• ArrayList
• LinkedList

• Vector
• Collections.synchronizedList()
• CopyOnWriteArrayList

List<Object> lists = …;

Non Thread-Safe

Thread-Safe

�83

List<Object> lists = new Vector<>();

�84

List<Object> lists = new Vector<>();

Thread

�85

Thread

Thread-safe!

List<Object> lists = new Vector<>();

�86

Thread

{

}
…

List<Object> lists = new Vector<>();

�87

Thread

{

}
…

List<Object> lists = new Vector<>();

�88

List<Object> lists = new CopyOnWriteArrayList<>();

�89

Thread
Thread-safe!

List<Object> lists = new CopyOnWriteArrayList<>();

List<Object> lists = new CopyOnWriteArrayList<>();

�90

{

}

Thread
Thread-safe!

 91

List<Object> lists = …;

• ArrayList
• LinkedList

• Vector
• Collections.synchronizedList()
• CopyOnWriteArrayList

Non Thread-Safe

Thread-Safe

 92

List<Object> lists = …;

Set<Objects> sets = …;

Map<Object, Object> maps = …;

 93

List<Object> lists = …;

Set<Objects> sets = …;

Map<Object, Object> maps = …;

 94

List<Object> lists = …;

Set<Objects> sets = …;

Map<Object, Object> maps = …;

16 Collections

 95

List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

16 Collections

 96

List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

Non thread-safe
Thread-safe

16 Collections

 97

List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

Java 7
Java 8

16 Collections

 98

List

ArrayList

Vector
Collections.syncList()

CopyOnWriteArrayList

Set

LinkedHashSet

Collections.syncSet()
CopyOnWriteArraySet

ConcurrentSkipListSet

ConcurrentHashSet
ConcurrentHashSetV8

Map

LinkedHashMap
Hashtable

Collections.syncMap()

ConcurrentSkipListMap
ConcurrentHashMap

ConcurrentHashMapV8

x 3 Operations
Traversal Insertion Removal

2 Environments
AMD CPU: A 2×16-core, running Debian, 2.4 GHz,
64GB of memory, JDK version 1.7.0 11, build 21.

 99

Intel CPU: A 2×8-core (32-cores w/ hyper-threading),
running Debian, 2.60GHz, with 64GB of memory, JDK
version 1.7.0 71, build 14.

2 Environments
AMD CPU: A 2×16-core, running Debian, 2.4 GHz,
64GB of memory, JDK version 1.7.0 11, build 21.

 100

Intel CPU: A 2×8-core (32-cores w/ hyper-threading),
running Debian, 2.60GHz, with 64GB of memory, JDK
version 1.7.0 71, build 14.

Hardware-based energy measurement

Software-based energy measurement

 101

Traversal Insertion Removal

Intel CPU

AMD CPU

Traversal Insertion Removal

Lists

 102

ArrayList Vector

Lists

Collections.synchronizedList()

 103

Lists

ArrayList Vector
Collections.synchronizedList()

Energy (Joules)

 104

Lists

ArrayList Vector

Energy (Joules) Power (Watts)

Collections.synchronizedList()

 105

Lists

ArrayList Vector

Energy (Joules) Power (Watts)

Collections.synchronizedList()

Traversal Insertion Removal

Intel CPU

AMD CPU

 106 106

Traversal Insertion Removal

Lists

 107

Traversal Insertion Removal

Intel CPU

AMD CPU

 107

Traversal Insertion Removal

Lists

 108

Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

 109

Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

 110

Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

 111

Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

 112

Maps

Intel CPU

Traversal Insertion Removal

AMD CPU

Traversal Insertion Removal

Less energy than the non thread-safe
implementation!

Case Study

 113

 114

Tomcat
> A web server
> More than 170K lines of Java code
> More than 300 Hashtables

 115

Tomcat

Xalan
> Parses XML in HTML documents
> More than 188K lines of Java code
> More than 140 Hashtables

> A web server
> More than 170K lines of Java code
> More than 300 Hashtables

 116

For each Hashtable
instance, change it for
a ConcurrentHashMap

one. Do it again for
ConcurrentHashMapV8

Task:

 117

Tomcat

Hashtable to CHM: -12.21%
Hashtable to CHM8: -17.82%

 118

Tomcat Xalan

Hashtable to CHM: -12.21%
Hashtable to CHM8: -17.82%

Hashtable to CHM: -5.82%
Hashtable to CHM8: -9.32%

 119

So, lets change all Hashtable
instances to ConcurrentHashMap!

Not so fast, young padawan…

 120

Hashtable ConcurrentHashMap

Map  implements

 121

Hashtable ConcurrentHashMap

Cloneable   Map  implements

 122

Hashtable ConcurrentHashMap

Cloneable   Map  

// works fine

implements

Map<X,Y> obj = new Hashtable<>();
obj.clone();

 123

Hashtable ConcurrentHashMap

Map<X,Y> obj = new Hashtable<>();
obj.clone();

Cloneable   Map  

// works fine

// compiler error

implements

Map<X,Y> obj = new ConcurrentHashMap<>();
obj.clone();

 124

Hashtable ConcurrentHashMap

Cloneable   Map  

// works fine

// compiler error

implements

Danny Dig

Opportunity for improving
refactoring tools!

Map<X,Y> obj = new Hashtable<>();
obj.clone();

Map<X,Y> obj = new ConcurrentHashMap<>();
obj.clone();

2017

 125
ASE’17

What are the
most common
bottlenecks in
Java parallel

computations?

Modern Java applications run on
parallel architectures

java.lang.Thread

• Widely used
• Low level API
• Error prone

• Well used
• High Level API
• User friendly

java.util.concurrent.Executors

Modern Java applications run on
parallel architectures

java.lang.Thread

• Widely used
• Low level API
• Error prone

• Well used
• High Level API
• User friendly

java.util.concurrent.Executors ForkJoin

• Can be more used
• Sophisticated API
• Sophisticated

scheduler

Modern Java applications run on
parallel architectures

java.lang.Thread

• Widely used
• Low level API
• Error prone

• Well used
• High Level API
• User friendly

java.util.concurrent.Executors

• Can be more used
• Sophisticated API
• Sophisticated

scheduler

ForkJoin

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

fork()fork()

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

fork()fork()

fork()fork() fork()fork()

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

fork()fork()

fork()fork()
join()

fork()fork()
join()

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

fork()fork()

fork()fork()
join()

fork()fork()
join()

join() join()

Why
ForkJoin?

Divider and conquer algorithm

@gustavopinto

fork()fork()

fork()fork()
join()

fork()fork()
join()

join() join()

n ForkJoin Task

Why
ForkJoin?

Work Stealing

1 2 3 4

7 3 5 1

n

n

ForkJoin Task

ForkJoin Worker

4

9

10

13

2

6

12

11

8

@gustavopinto

Why
ForkJoin?

Work Stealing

1 2 3 4

7 3 5 1

n

n

ForkJoin Task

4

9

10

13

2

6

12

11

8

ForkJoin Worker

@gustavopinto

Why
ForkJoin?

Work Stealing

1 2 3 4

7 3 1

n

n

ForkJoin Task

4

9

10

13

2

6

12

11

8

ForkJoin Worker

@gustavopinto

Why
ForkJoin?

Work Stealing

1 2 3 4

7 3 1

n

n

ForkJoin Task

4

9

10

13

2

6

12

11

8

2

ForkJoin Worker

@gustavopinto

Why
ForkJoin?

Work Stealing

1 2 3 4

7 3 1

n

n

ForkJoin Task

4

9

10

13

6

12

11

8

2

ForkJoin Worker

@gustavopinto

ForkJoin
Applications

Our corpus of data

+

@gustavopinto

Application
Programmers

System
Programmers

Understanding
Parallelism
Bottlenecks v0

@gustavopinto

{ …

Understanding
Parallelism
Bottlenecks v0

For each version, we measured execution time
and energy consumption

Intel CPU: A 2×8-core (32-cores w/ hyper-threading),
running Debian, 2.60GHz, with 64GB of memory, JDK
version 1.7.0 71, build 14.

JRapl: Software-based energy measurement
@gustavopinto

{ …

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

actor

actors process their own messages

there is no side effect

@gustavopinto

mailbox

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

actor

actors process their own messages

actors exchange, but do not share
the same message

there is no side effect

@gustavopinto

mailbox

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

actor actor

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

actor

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

(Centralized)

actor actor

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

(Centralized)

actor actor
mailbox

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

(Centralized)

actor actor
mailbox

tn=

Overcoming
Parallelism
Bottlenecks

Work Stealing

1 2 3 4

7 3 5 1

n

n

ForkJoin Task

ForkJoin Worker

4

9

10

13

6

12

11

8

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

(Centralized)

actor actor
mailbox

tn=

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

(Centralized)

@gustavopinto

(DEcentralized)

actor actor

actor actor
mailbox

tn=

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

(Centralized)

@gustavopinto

(DEcentralized)

actor actor

actor actor
mailbox

tn=

mailbox

.for
k()

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

(Centralized)

@gustavopinto

(DEcentralized)

actor actor

actor actor
mailbox

tn=

mailbox

.for
k()

tn

Overcoming
Parallelism
Bottlenecks

Work Stealing

1 2 3 4

7 3 5 1

n

n

ForkJoin Task

ForkJoin Worker

4

9

10

13

6

12

11

8

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

(Centralized)

@gustavopinto

(DEcentralized)

actor actor

actor actor
mailbox

tn=

mailbox

.for
k()

tn

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

3.3x

6.4x

Overcoming
Parallelism
Bottlenecks

Bottleneck #1: Centralized pooling

@gustavopinto

3.3x

6.4x

Overcoming
Parallelism
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =
t2 = first half
t3 = second half

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =

t1

t2

t3

t2 = first half
t3 = second half

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =

t1

t2

t3

t2 = first half
t3 = second half

make global

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =

t1

t2

t3

t2 = first half
t3 = second half

0 1 2 3 4 5 6 7

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Bottleneck #2: Copy on Fork

a b c d e f g ht1 =

t1

t2

t3

t2 = first half
t3 = second half

1 2 5 6
Up to 20% of

energy savings!

@gustavopinto

0 3

4 7

Overcoming
Parallelism
Bottlenecks

Automating Bottleneck #2: Copy on Fork

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Patching Bottleneck #2: Copy on Fork

@gustavopinto

Overcoming
Parallelism
Bottlenecks

Patching Bottleneck #2: Copy on Fork

7/9 of
projects that

replied
have

accepted
the PR

@gustavopinto

Next?

CACM’2017

Better tool support

Books, cookbooks, guidelines

Refactoring
Testing
Debugging
Visualization
Estimation
….

The Last Five Years of Energy
Consumption Research

Gustavo Pinto

My personal, biased view of

@gustavopinto
gpinto@ufpa.br

mailto:gpinto@ufpa.br?subject=

