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Abstract—FORKJOIN framework is a widely used parallel
programming framework upon which both core concurrency
libraries and real-world applications are built. Beneath its simple
and user-friendly APIs, FORKJOIN is a sophisticated managed
parallel runtime unfamiliar to many application programmers:
the framework core is a work-stealing scheduler, handles fine-
grained tasks, and sustains the pressure from automatic memory
management. FORKJOIN poses a unique gap in the compute stack
between high-level software engineering and low-level system
optimization. Understanding and bridging this gap is crucial for
the future of parallelism support in JVM-supported applications.

This paper describes a comprehensive study on parallelism
bottlenecks in FORKJOIN applications, with a unique focus
on how they interact with underlying system-level features,
such as work stealing and memory management. We identify 6
bottlenecks, and found that refactoring them can significantly
improve performance and energy efficiency. Our field study
includes an in-depth analysis of AKKA — a real-world actor
framework — and 30 additional open-source FORKJOIN projects.
We sent our patches to the developers of 15 projects, and 7 out
of the 9 projects that replied to our patches have accepted them.

I. INTRODUCTION

Modern Java applications predominately run on parallel ar-
chitectures, whose performance and energy efficiency critically
depend on efficient thread management. FORKJOIN [1] is an
influential parallel framework at the core of Java concurrency
design. It not only provides thread management to numer-
ous real-world applications, but also serves as the bedrock
for higher-level Java concurrent libraries [2]. The impact of
FORKJOIN also goes beyond Java applications per se, as
several new programming languages [3], [4], [5] continue
to operate on Java Virtual Machines (JVMs) and rely on
FORKJOIN for thread management. FORKJOIN is known for
its intuitive programming interface, particularly suitable for
programming task-parallel and data-parallel jobs that have a
divide-and-conquer nature.

FORKJOIN employs a work-stealing runtime [1]. While
work stealing provides many benefits in resource utilization
and scalability, efficient stealing dictates careful coordination
across the layers of applications, runtime systems, and the
OS. System-level performance and energy optimizations for
C-based work-stealing programs are not new [6], [7], [8],
[9], but combining work stealing with a Java-like managed
runtime and, more importantly, reorienting it to application
programming comes with a distinct set of unique challenges:

• Thread Management: work stealing by nature is “de-
centralized coordination,” where threads coordinate on
system utilization but thread management decisions are

made by individual threads. This is in contrast with
existing approaches either lacking coordination (e.g., Java
Thread objects) or requiring centralized management
(e.g., thread pooling).

• Synchronization Management: work stealing presents
unique features in managing synchronization and thread
states. Unfortunately, they conflict with traditional ap-
proaches such as locks (e.g., synchronized methods)
and explicit thread state management (e.g., sleep) [10],
leading to erratic performance surprising to application
programmers. This problem is exacerbated by the large
legacy code base of Java applications and libraries.

• Data Management: the Java runtime primarily allocates
objects in the heap, and deallocation is managed by
garbage collection. This is in sharp contrast with C-based
work-stealing frameworks [11], where data are routinely
represented as arrays of primitive data types. As a result,
the allocation and distribution of data among worker
threads plays a pivotal role in application performance.

Do these challenges introduce bottlenecks in modern paral-
lel applications running on FORKJOIN? How severe are these
bottlenecks in terms of performance and energy efficiency? Is
there generalizable wisdom that can be shared with FORKJOIN
programmers to avoid the bottlenecks?

This Paper We present the first empirical study to bridge the
gap between modern software engineering and work-stealing
systems in the context of FORKJOIN. It aims at providing
a better understanding—as well as raising the awareness—of
the subtleties and common performance pitfalls in FORKJOIN
programming through a comprehensive study of character-
istics and behaviors of real-world FORKJOIN applications.
We identify potential bottlenecks against parallelism in these
applications, illustrate their impact on system performance
and energy, and demonstrate how such bottlenecks can be
overcome through refactoring.

Our study follows a unique cross-layer approach: it is
application-driven and system-aware. On the one hand, we
are more interested in how real-world applications built on
FORKJOIN behave—and how their performance can be im-
proved through application-level programming—rather than
an “under-the-hood” system-level optimization. On the other
hand, we are aimed at finding the root causes of the bottlenecks
on the systems stack, such as how each bottleneck may
potentially hamper the desired behavior of the work stealing
scheduler, garbage collector, and underlying hardware. This
cross-layer approach advances software engineering by provid-



TABLE I
PLACING FORKJOIN IN CONTEXT.

work stealing fine-grained dynamic garbage unstructured programmable
parallelism allocation collection synchronization thread states

Fortran no no no no yes uncommon
Pthread no no uncommon no prevalent prevalent

OpenMP no no uncommon no uncommon uncommon
MPI yes yes uncommon no uncommon uncommon
Cilk yes yes uncommon no uncommon uncommon

Java threads no no prevalent yes prevalent prevalent
X10 yes yes prevalent yes uncommon uncommon

Haskell yes yes prevalent yes uncommon uncommon
FORKJOIN yes yes prevalent yes prevalent prevalent

ing guidelines for performance improvement and illuminating
why programming patterns and performance are intimately
linked. The approach also advances system research by filling
a void of assessing work stealing through an empirical and
application-oriented route, taking advantage of the fact that
FORKJOIN is the first work stealing framework with a large
application developer base.

We take a two-pronged approach for our empirical study.
First, we conduct a depth-oriented study on AKKA [12], a
sophisticated middleware FORKJOIN-based framework. We
identify a bottleneck at the junction of AKKA’s messaging
engine and FORKJOIN, and demonstrate an average speedup
of 3.1× and up to a 13.1×, and an average energy savings of
31.6% up to 80.2% through an in-depth refactoring of AKKA’s
core messaging engine. Second, we conduct a breadth-oriented
study through investigating 30 real-world FORKJOIN projects
from GitHub, with a total of 791K LOC. We summarize
our findings as a taxonomy of 6 bottlenecks and present a
cross-layer analysis on the root causes of these bottlenecks.
By removing these bottlenecks, the optimized applications
can produce an average of 26% of performance improvement
and 23% of energy savings. Our optimization patches were
confirmed by the majority of application developers we com-
municated with.

This paper makes the following contributions:
• We present a comprehensive application-driven system-

aware empirical study on performance and energy effi-
ciency of FORKJOIN applications.

• We identify 6 bottlenecks latent in FORKJOIN applica-
tions, analyze their root causes, and provide programming
patterns for mitigating them.

• We develop FJDETECTOR, a bottleneck detection and
refactoring tool that can perform interactive source-code-
level optimizations of some FORKJOIN applications.

The source code of the tool we have developed, as well as
all raw data, can be found online.1

II. BACKGROUND

We now provide a brief background on the work stealing
algorithm, its implementation in FORKJOIN, and applications
built on FORKJOIN.

1https://github.com/gustavopinto/fjdetector

Work Stealing Work stealing was popularized by the Cilk
language [11], a C-like language designed for parallel pro-
gramming. In the work-stealing runtime, each CPU core is
managed by a worker, which is often directly mapped to an
OS thread. The computational unit executed by each worker
is called a task, during whose execution may fork additional
tasks. These tasks are placed on a decentralized per-worker
queue. When a worker completes a task, it picks up one more
from its queue. When the queue is empty, the worker steals a
task from the queue of another worker. In this case we call the
stealing worker a thief while the worker whose item was stolen
is called a victim. Ultimately, workers are joined to compute
a result.

Observe that the logical parallel processing unit, a task,
is different from the physical parallel unit, a worker. In
practice, the number of workers (physical threads) is statically
determined—often the same as the number of CPU cores—
whereas the number of tasks (logical processing unit) far
exceeds the number of workers. Work stealing, therefore, is
an instance of fine-grained parallelism.
The FORKJOIN Framework FORKJOIN is Java’s parallel
programming framework with a unique set of features. Table I
places FORKJOIN in the context of commonly used frame-
works and languages.

At its core, FORKJOIN is a concrete implementation of
work stealing. The ForkJoinPool class is the entry point
of the FORKJOIN framework, where the programmer can
specify the number of workers. Tasks are modeled as sub-
classes of the ForkJoinTask class: RecursiveTask and
RecursiveAction. The two differ in that only the former
can return the result of a computation. Upon execution, a
ForkJoinTask instance may in turn fork additional tasks—
called child tasks—via the fork method. Invoking the join
method introduces synchronization between the enclosing task
and its children. The framework also provides additional util-
ity methods. For example, method invokeAll is syntactic
sugar for a fork immediately followed by a join. Method
isDone inspects whether a task has completed.
FORKJOIN Applications As FORKJOIN runs on the JVM,
its influence extends beyond applications written in Java.
A growing number of object-oriented languages—such as
Scala—are translated to Java (bytecode) and operate on the
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JVM. Such programming languages also take advantage of
FORKJOIN for thread management. As our main interest is
on dynamic behavior of FORKJOIN—performance and energy
efficiency in particular—we view applications written in these
languages also as FORKJOIN applications.

One example is AKKA, an actor framework written in Scala
but built on Java’s FORKJOIN. Scala’s programming interface
for FORKJOIN is identical to the interface described above,
with the exception of language-specific grammatical differ-
ences. Conceptually, actors are a message-passing framework
where each actor serves as a logical processing unit that
communicates with each other. No two actors share memory,
leading to benefits such as race condition freedom by design.
AKKA has been deployed by companies such as Groupon,
eBay, and Amazon.

III. METHODOLOGY

Benchmarks Table II shows the applications within the scope
of this study. The first row provides the information for AKKA.
We selected this application because: (1) AKKA is among
the largest open-source projects built on top of FORKJOIN;
(2) AKKA has been extensively deployed in the real world;
(3) AKKA is a middleware framework rather than an “end-
user” application. Its performance improvement may lead to
significant impact on a large number of end-user applications.

For the breadth-oriented study we searched Github for the
key word “ForkJoin” and selected a set of 30 open-source
projects, covering a wide range of application domains from
supervisor management to raytracing. Our selection criteria
are: (1) they should not be tutorials; (2) they should be recent,
but not currently under rapid changes. For example, we did
not select any projects whose first commit and last commit are
both within 6 months; (3) they must be able to compile and
run. For each project, we investigate its source code looking
for possible bottlenecks. If the project has tests, we executed
the tests that perform FORKJOIN computations; otherwise, we
wrote the tests. We discarded projects where we were unable
to find any bottleneck.
Experiments We ran each selected application in a machine
with a 2×8-core (32-core when hyper-threading is enabled) In-
tel(R) Xeon(R) E5-2670 CPU (2.60GHz) and 64GB of DDR3
1600 memory, running Debian 6 (kernel 3.0.0-1-amd64) and
Oracle HotSpot 64-Bit Server VM (build 25.5-b02, mixed
mode, JDK version 1.8.0 05-b13). The machine has three
cache levels (L1, L2 and L3), whose sizes are 64KB per
core (128KB total), 256KB per core (512KB total), and 3MB
(smart cache), respectively. All experiments were performed
in the OS-exclusive mode without any other loads running
simultaneously.

The default settings of both the OS and the JVM were
used. In particular, (1) the power management of Linux is the
default ondemand governor, which dynamically adjusts CPU
core frequencies based on system workloads. (2) For the JVM,
the parallel garbage collector is used and just-in-time (JIT)
compilation is enabled. The initial heap size and maximum
heap size were set to be 1GB and 16GB respectively. Hyper-
threading is enabled and the Turbo Boost feature is disabled.

TABLE II
A SAMPLE OF PROJECTS USED IN THIS STUDY. LOCS ENCOMPASS ONLY
NON-BLANK AND NON-COMMENTED LINES OF CODE COMPUTED USING

THE CLOC PROGRAM.
Projects # LoC # Commits # Bottlenecks
Akka 326,341 20,759 1
itemupdown 4,925 2 2
jAcer 4,476 35 2
educational 1,323 7 2
scalatuts 253 5 2
knn 3,099 27 2
doms-transformers 3,714 254 2
ForkAndJoinUtility 127 12 2
Solitaire 1,527 39 2
mywiki 1,920 17 2
MagicSquares 664 153 2
ejisto 12,330 274 2, 3
exhibitor 15,314 701 2, 3, 4
cq4j 5,815 23 2, 3
netflixoss 231,361 1 2, 3
javaOneBR-2012 518 4 2, 3
jadira 46,095 630 3
ecco 5,849 119 3
conflate 934 9 3
bazzar-base 7,766 15 3, 4
DocumentIndexing 1,127 1 4
CSSTProto 10,721 17 4
Fibonacci 79 2 5
Mandelbrot 1,442 30 5
Solitaire 1,527 39 5
Matrices 2,356 15 5
LockedBasedGrid 1,390 1 5
Basic-Blocks 4,821 41 5
warp 15,287 338 6
j7cc 5,110 76 6
lowlatency 3,018 18 6

For all applications other than AKKA, we ran each bench-
mark 10 times; this is implemented by a top-level 10-iteration
loop over each benchmark. The reported data is the average
of the last 3 runs to warm up the JIT optimizations [13]. For
our AKKA study, we ran each benchmark 27 times, discarding
the first 7 runs. Message passing frameworks such as actors
are known to have a higher degree of nondeterminism. We
observed higher variation in our experiments and choose to
represent results with a larger sample of data.

Energy consumption was measured using jRAPL [14], a
framework that contains a set of APIs for profiling Java pro-
grams running on CPUs with Running Average Power Limit
(RAPL) [15] support. Our energy consumption data include
CPU core, CPU uncore, and DRAM energy consumption.

IV. A STUDY ON AKKA

In this section we conduct a depth-oriented study on poten-
tial parallelism bottlenecks latent in FORKJOIN applications,
with a focus on AKKA.
An Overview of AKKA (Messaging) Core AKKA’s internal
messaging structure is detailed in Listing 1. Messages are en-
capsulated by an Envelope that bundles an abstract message
with its sending actor. Messages are sent between actors by
forwarding the message to the Dispatcher. Messages sent
to an actor are queued up in the actor’s Mailbox, which is an
instance of a ForkJoinTask. Once scheduled, a Mailbox
task will process all messages held in its queue, one at a time
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case class Envelope(message: Any, sender: Actor)
class Mailbox(queue: Queue[Envelope])

extends ForkJoinTask {
var receiver: Actor = _
def setActor(a: Actor) = receiver = a
def hasMessages: Boolean = { ... }
def isScheduled: Boolean = { ... }
def setScheduled() = { ... }
def setNotScheduled() = { ... }
def run: Boolean = { processMailbox() }
def processMailbox(): Unit = {
val next = queue.next()
if (next != null) {
receiver.invoke(next)
processMailbox()

}
setNotScheduled()

} }
class Dispatcher {
val pool: ExecutorService
def dispatch(receiver: Actor, msg: Envelope) = {
val mbox = receiver.mbox
mbox.enqueue(msg)
if (!mbox.isScheduled) {
mbox.setScheduled()
pool.execute(mbox)

}
} }

class Actor(mbox: Mailbox, dispatcher: Dispatcher) {
def sendMessage(msg: Envelope): Unit = {
// ...
dispatcher.dispatch(this, msg)

} }

Listing 1. The Core AKKA Messaging Logic (Classes Mailbox,
Dispatcher, and Actor have additional unrelated methods not
shown)

in the same order that the messages were received. A message
is processed when the message handler defined in the actor has
been executed. Note that a Mailbox, once scheduled, may
represent a long-running task. Furthermore, a Mailbox han-
dles synchronization via status bits and compare-and-swap, ab-
stractly represented with isScheduled, setScheduled,
and setNotScheduled. Overall, an AKKA runtime may
consist of a large number of actors, and FORKJOIN provides
fine-grained parallelism for message processing of different
actors, as illustrated by the Mailbox class.
Bottleneck: Centralized Pooling FORKJOIN as a work-
stealing runtime in essence features decentralized thread man-
agement: decisions on task creation, execution, and migra-
tion are managed by individual worker threads and there is
no centralized control. For backward compatibility purposes,
FORKJOIN in addition supports centralized pooling: main-
taining a centralized task pool where all newly created tasks
should be submitted, and from which all FORKJOIN workers
steal2. Centralized pooling, however, goes against the spirit of
work stealing, which may lead to performance penalties.

AKKA handles Mailbox tasks through centralized pooling.
This can be seen in the dispatch method in Listing 1, where
the mailbox is submitted through execute to the centralized
pool. Indeed, the Mailbox abstraction is a natural design
choice considering AKKA needs to maintain the semantic
guarantee that messages are processed one at a time in the

2For backward compatibility reasons, the conceptually centralized pool is
implemented as the union of all FORKJOIN worker thread queues.

class Envelope(message: Any, sender: Actor)
extends ForkJoinTask {

var receiver: Actor = _
def setActor(a: Actor) = receiver = a
def run(): Unit = {
receiver.invoke(message)
receiver.mbox.setNotRunning()

}
}
class Mailbox(queue: Queue[Envelope])

extends ForkJoinTask {
var receiver: Actor = _
def setActor(a: Actor) = receiver = a
/* hasMessages, isScheduled, setScheduled,

setNotScheduled same as Listing 1 */
def isRunning: Boolean = { ... }
def setRunning() = { ... }
def setNotRunning() = { ... }
def run: Boolean = {
if (!isRunning) { processMailbox() }
else { run() }

}
/* processMailbox same as Listing 1 */

}
class Dispatcher { /* Same as Listing 1 */ }
class Actor(mbox: Mailbox, dispatcher: Dispatcher) {
def sendMessage(msg: Envelope): Unit = {
msg.setActor(this)
if (!mbox.hasMessages && mbox.notRunning) {
mbox.setRunning()
msg.fork()

} else {
dispatcher.dispatch(this, msg)

}
} }

Listing 2. Refactored AKKA Messaging Logic

well-preserved order. The sacrifice to be made is that a task
cannot be forked for every message sent, de facto foregoing
the decentralized nature of FORKJOIN design. This may lead
to performance penalties, especially when an actor does not
continuously receive a backlog of messages, i.e, incoming
messages do not need to be queued.

Centralized pooling is unfriendly to ForkJoin for several
reasons. First, there is greater synchronization overhead associ-
ated with scanning the centralized pool. Second, the processing
of individual tasks must go through centralized scheduling,
often delayed compared with the decentralized design.
Overcoming the Bottleneck We illustrate a modified version
of AKKA that takes advantage of fork in Listing 2. Our intu-
ition is that when the Mailbox is empty we can immediately
fork the message handling as a task at message-send time.
We transformed the Envelope class into a ForkJoinTask,
which upon run, will invoke the handler of the message
receiver. To determine whether the mailbox is empty we
introduce a flag isRunning which will be atomically ac-
cessed. When the Mailbox is not empty the program defaults
to AKKA’s one-at-a-time message processing. Algorithmically,
this refactoring may improve performance of AKKA programs
because it removes the handling of the first actor message from
the critical path of actor message handling. The synchroniza-
tion introduced by isRunning is per mailbox, decentralized
in nature.

In our implementation we further enable a light-weight
tracking on how often Mailbox is empty when a message
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Fig. 1. Speedup (Y-Axis in Logarithmic Scale) and Energy Saving of
Refactored AKKA Implementation

is sent to it. The AKKA runtime adaptively switches to the
default when the likelihood is small.
Performance Impact We have modified AKKA 2.5 — com-
piled and run with Scala 2.11 — to incorporate these changes.
We have evaluated these changes within AKKA with 7 micro
benchmarks provided by the actors benchmarking suite,
with minor changes to include our performance measure-
ments [16]. ping-throughput creates several pairs of
actors that ping messages. single-ping is an instance of
this general pattern where only one pair of actors with a large
number of messages are created. Additionally, we created two
variations of ping-throughput: middle-man, where
two pinging actors compete to send messages to a third,
“middle man” actor; and mediator, where a ping messages
must first pass through a third actor. single-producer
taxes a single actor by sending a large number of messages
without waiting. multi-producer spawns 8 application
threads that all send messages without waiting to a single
actor. max-throughput spawns 8 application threads that
each send messages without waiting to their own actor. The
number of actors and messages per actor for each benchmark
are detailed in Table IV.

As shown in Figure 1, eliminating the centralized pooling
bottleneck results in a remarkable improvement in perfor-
mance and energy efficiency. We observe an average of 3.1×
speedup and 31.6% energy savings in a wide spectrum of set-
tings. Among them, ping-throughput, single-ping,

and mediator, reacted to our refactoring with overwhelm-
ingly positive results. These three benchmarks capture the
scenario when an actor or some actors are able to process
messages without them queueing up, and represent the case
where our experiments confirm that fork leads to per-
formance benefits. For ping-throughput, the observed
speedup ranges from 3.6× to 13.1×, and the energy savings
range from 62.9% to 79.4%. In contrast, max-throughput,
single-producer, and multi-producer, capture the
scenario where an actor will receive messages faster than it can
process them, and represent the case where our experiments
indeed show a mild slowdown. We will discuss these details
shortly. The most intriguing case is perhaps middle-man, a
hybrid case where some running actors are observed to have
a backup of messages. Encouragingly, middle-man has a
stable 1.93× to 2.31× speedup and 43.4% to 52.2% energy
savings.

AKKA as a middleware framework may be subjected to
diverse workloads. Refactoring at the level of the core service
of AKKA cannot — nor should it be expected to — benefit all
workloads. In our experiments we find our new implementa-
tion of AKKA is effective in the presence of heavy workloads
in terms of the number of actors, the number of messages, and
the number of workers. The workload it does not handle well
is the case when the throughput rate of an actor’s message
handler is far below the rate of its message reception. Our
current sampling algorithm partially addresses this issue, but
a more refined workload characterization is likely needed for
an industrial-strength AKKA re-implementation. We highlight
the 32-thread configuration in Table III. Observe that in the
case that we do not perform well, the slowdown remains within
the deviation.

V. A TAXONOMY OF FORKJOIN PARALLELISM
BOTTLENECKS

Centralized pooling is an important bottleneck we have
discovered for FORKJOIN applications, but not the only one.
In this section, we summarize additional bottlenecks we have
found in our study. From now on, centralized pooling is also
called Bottleneck 1.
Bottleneck 2: Copy on Fork For data-intensive applications, a
performance-sensitive dimension of design is data distribution,
i.e., how data are spread through parallel execution units. In
divide-and-conquer frameworks — including FORKJOIN —
the general strategy is to represent the data as an indexible
structure, e.g., a (potentially multidimensional) array, which
in turn can be partitioned into slices and fed to individual
parallel execution units.

This simple process may pose challenges to a FORKJOIN
programmer. In particular, data in Java are often represented as
objects, and arrays are dynamically allocated. The combination
effect of aliasing and shared-memory programming implies
that data distribution “by reference” at forking time may
introduce race conditions.

As a conservative approach, many FORKJOIN programmers
choose to copy data at the forking time. Observe the following
usage of the copyOfRange in Figure 2.
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TABLE III
DETAILED PERFORMANCE STATISTICS: AKKA WITH 32 FORKJOIN WORKER THREADS

Runtime (ms) Energy (J)
benchmark original σ custom σ speedup original σ custom σ savings

max-throughput 2057.6 621.41 1978.5 394.13 1.04x 397.93 119.98 388.15 81.89 2.46%
single-ping 11716.6 739.74 8694.45 1568.18 1.35x 1921.59 289.79 1737.14 277.48 9.6%

ping-throughput 2507.4 107.89 701.3 69.13 3.58x 526.67 24.19 195.67 15.19 62.85%
single-producer 4078.7 1331.51 5257.45 2651.6 0.78x 512.38 157.05 580.63 249.51 -13.32%
multi-producer 7236.95 993.1 7907.25 1557.71 0.92x 732.65 174.19 846.34 283.68 -15.52%
middle-man 3827.4 151.74 1752.9 185.51 2.18x 807.48 31.31 437.72 38.06 45.79%
mediator 4505.05 376.8 679.7 70.38 6.63x 912.59 78.22 194.78 14.65 78.66%

TABLE IV
AKKA BENCHMARK CONFIGURATIONS

actors messages per actor
max-throughput 8+8 1,500,000
single-ping 2 300,000,000

ping-throughput 20,000 1000
single-producer 1 600,000,000
multi-producer 1+8 600,000,000

middle-man 30,000 2000
mediator 30,000 1000

import static Arrays.*;
class Task extends RecursiveAction {
public Task (User[] u) { ... }
protected void compute() {
if (u.length < N) { local(u); }
else {
int split = u.length / 2;
User[] u1 = copyOfRange(u, 0, split);
User[] u2 = copyOfRange(u, split, u.length);
invokeAll(new Task(u1), new Task(u2));

} } }

Fig. 2. Example of copying data over sub-tasks

Beyond the obvious consequences such as memory
bloat [17], excessive copying turns out to be uniquely un-
friendly to FORKJOIN, for a number of reasons. (1) As a
fine-grained parallelism framework, most tasks are completed
within milliseconds. Copying upon fork implies the dominat-
ing growth of short-lived objects, creating a severe burden
for garbage collection. (2) The cascaded division common in
FORKJOIN applications means that data are copied at every
level of recursion, potentially leading to an O(log n) growth in
memory. In contrast, copying for flat data partitioning can only
lead to a constant growth in memory. (3) Unlike copying with
flat data partitioning where all allocations are done once and
for all, a strategy somewhat friendly for the memory allocator
due to batching, copying with cascaded data partitioning leads
to frequent yet intermittent allocation requests, hampering
performance.

Among the 30 programs we have studied, we found 18
occurrences of this bottleneck, in 15 FORKJOIN programs.
Fixing the bottleneck requires simple modification of the
source code that shares the input data structure and lets
subtasks work on distinct regions of the data structure. Fig-
ure 3 shows the energy gains from fixing this bottleneck.
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when removing the Copy on Fork
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ForkAndJoinUtility,
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ejisto, cq4j, and
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Clearly, the energy
consumption is reduced in all
the refactored programs. The
average reduction in energy
consumption is 12.63%. The
execution time decreases
proportionally. Interestingly,
9 out of the 15 analyzed
projects cross the 10% barrier
of energy savings. However,
5 of the analyzed projects
have energy savings of less
than 5%. For the projects
above 5%, the minimum
energy saving was 8.23%
(for itemupdown), and the
maximum was 23.51% (for
MagicSquares). After inspecting these projects, we have
observed that the amount of energy savings is related to
the width of forking. That is, the more the program creates
redundant copies of the data structure, the more effective our
refactoring is.

Figure 4 shows the comparison results before and af-
ter eliminating copies for MagiSquares, a computational
benchmark for computing the magic square puzzle3. The data-
parallel computation is based on the number of permutations
available, which represents all possible rows, columns, and
diagonals. Each parallel task attempts to construct a matrix
whose first row is the permutation and whose first column
is another permutation that begins with the same entry and
contains no other duplicate entries. The algorithm attempts
to find sum permutations to fill in the remaining rows and
columns. When sharing the data structure, we saved the
program from creating 128 additional data structures (with
integer data type), leading to a 23.51% energy saving, when
running with 32 threads.

3http://mathworld.wolfram.com/MagicSquare.html
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Enabled by jRAPL, we also report our results on the
hardware component-level for DRAM, CPU, and Uncore re-
spectively. We observed that roughly the same amount of CPU
energy was consumed before and after removing the copies
(i.e., 8.32 Joules and 6.67 Joules, respectively). However, the
difference is more obvious when the energy consumptions of
DRAM and Uncore are compared. Due to the excessive object
creation, DRAM and Uncore of the original version consume
1.39× and 1.43× more energy than the optimized version.

Since Copy on Fork creates large volumes of small, shortly-
lived data structure objects, it is interesting to understand how
different GC algorithms may impact our results, we conducted
experiments over 5 GC options in Hotspot: (a) SerialGC:
the stop-the-world serial collector, (b) ParallelGC: the par-
allel collector, (c) ParallelOldGC: the parallel collector with
data compression, (d) ConcMarkSweepGC: concurrent mark
sweep collector, and (e) G1GC: the garbage-first collector.
Figure 5 shows the results for MagicSquare. For almost all
algorithms, the fix can speed up GC by 20%–40%.

Copy
Reference

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

0
2
0

4
0

6
0

8
0

a b c d e

Copy
Reference

T
im

e
 (

s
e
c
)

0
2

4
6

8
1
2

a b c d e

Fig. 5. A Comparison of GC costs (MagicSquares, 32 threads; GC
algorithms are: a: SerialGC, b: ParallelGC, c: ParallelOldGC, d: Par-
allelNewGC, e: G1GC).

Bottleneck 3: Copy on Join The counterpart of Copy on Fork
is Copy on Join: after having joined on its subtasks, a task must
usually combine the results of the subtasks into a result for the
larger problem. Consider the program in Figure 6, extracted
from the cq4j benchmark.

protected List<T> compute() {
int size = dataSource.size();
if (size < FORK_SIZE) {
return computeDirectly();

} else {
List<T> result = new ArrayList<T>();
int mid = size / 2;
RecursiveFilteringTask<T> first = new

RecursiveFilteringTask<T>(filter, dataSource.
subList(0, mid));

first.fork();
RecursiveFilteringTask<T> second = new

RecursiveFilteringTask<T>(filter, dataSource.
subList(mid, size));

second.fork();
result.addAll(first.join());
result.addAll(second.join());
return result;

}
}

Fig. 6. Example of joining data with sub-tasks.

As one reader might observe, this particular code snip-
pet suffer from the same bottleneck previously explained
(creating sublists of the current data structure). However,
this benchmark also presents a different bottleneck. At the
end of the execution, an expensive operation addAll is
invoked to copy merge collections. Copy on Join has many
negative consequences similarly to Copy on Fork, with one

additional unique drawback: since joining in a work stealing
system is implemented by barriers, Copy on Join increases
the wait time at barriers, particularly unfriendly for energy
consumption. Note that this is an established fact [18], [19],
[9], [13]: barrier wait at the low level is either implemented
as spin locks or context switch, both of which can lead
to energy waste without contributing to program progress.

1 2 3 4 5

0
4

8
1

2

Fig. 7. Energy savings (%)
after removing the Copy on
Join bottleneck. From left
to right, projects are: cq4j,
ejisto, javaOneBr-2012,
exhibitor, conflate.

We have found 5 occurrences of
this bottleneck in the 30 pro-
grams studied. A fix of this bot-
tleneck is similar to that of Copy
on Fork: a shared data struc-
ture can be passed into subtasks
to carry results. After applying
these changes in 5 programs, we
have achieved overall 3% – 13%
energy savings. The results are
shown in Figure 7.

Bottleneck 4: Scattered Data We next investigate the impact
of data locality on performance and energy consumption. An
important pattern we found is that the execution of a task
follows the sequence of ababababc, where a performs memory
copies for a subtask, b forks the subtask, and c does the
computation of the current task. Figure 8 shows a code snippet
of this case, extracted from benchmark CSSTProto.

protected R compute() {
if (len == 1) {

RecursiveTask<R> task = createTask(from);
return task.invoke();

} else {
ForkJoinTask<R>[] tasks = new ForkJoinTask[len];
for (int i = 0; i < len; i++) {

ForkJoinTask<R> task = createTask(from+i);
task.fork();
tasks[i] = task;

}
R result = tasks[0].join();
tasks[0] = null;
for (int i = 1; i < len; i++) {

R next = tasks[i].join();
tasks[i] = null;
result = merge(result, next);

} return result; }

Fig. 8. Example of scattered data.

This pattern has impact on energy consumption and perfor-
mance for several reasons. First, the copy operation has the
potential of polluting caches, increasing the chance of memory
round-trips. Second, the number of context switches might also
increase, due to the sparse task creations. A possible solution
to this problem is to create a list of tasks and, during the for
loop, add each new task object to the list. After the execution
of the for loop, one might call the invokeAll method,
which is responsible for forking and joining all tasks in the list.
With this fix, we have observed an energy saving of 9.82% for
CSSTProto. Regarding cache behavior, we observed that the
original implementation had a 34.24% cache misses, whereas
the fix reduced it to 31.98%. We also observed a reduction
on context switches, from 24,550 to 23,193. Yet, the number
of branch misses is also reduced: from 1.82% of all branches
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to 1.14% 4, which we believe is due to the boilerplate code
used our initial example; invokeAll eliminates the first for
loop, then reducing the overall number of branches and, as a
consequence, the number of branch misses.
Bottleneck 5: Exacting Intra-Task Synchronization As locks
play a central role in Java shared-memory programming and
metadata representation, unstructured synchronization (i.e.,
object locks) is pervasive in Java applications. Synchroniza-
tion occurs via invoking synchronized methods or code
blocks, or using popular concurrent library classes such as
CountDownLatch. Improving performance and energy effi-
ciency for systems where unstructured synchronization is the
only mechanism to achieve concurrency safety — such as
Pthreads or the Java Thread library— is a well understood
topic.

Mixing unstructured synchronization in a structured parallel
system such as work stealing leads to additional subtle inter-
actions between the application runtime and the OS. When
unstructured synchronization happens in the middle of the
task execution, it effectively stalls stealing from that worker.
Unfortunately, the stalled worker cannot forgo the current task
and select another task from its deque — even if there are
many other task items in it — because tasks on the deque in
a work stealing system carry inherent logical dependencies,
analogous to stack frames. At best, the worker itself can be
context-switched by the OS. Observe however, even though
there may be thousands of tasks in the work-stealing runtime,
the number of workers — the JVM representation of OS
threads — is few, typically smaller than the number of CPU
cores. In other words, OS-level context switch may at best help
other applications in a time-sharing environment, but will not
contribute to improving the performance or energy efficiency
of the application itself.

The most principled solution to avoid the bottleneck is to
eradicate unstructured synchronization from Java. There is
encouraging progress in recent Java development to support
asynchronous abstractions, such as futures [20]. However,
it may take time before Java practitioners fully embrace
these features [10]. In this study, we investigate into legacy
programs, attempting to understand how unstructured syn-
chronization is used in the real world. Overall, we found 7
occurrences of this bottleneck. Surprisingly, we found in a
significant number of projects, an easier solution exists: many
synchronizations are simply to implement exact computations,
which can be safely relaxed [21] without creating any impact
on correctness [22].

We illustrate this bottleneck with benchmark
Mandelbrot. A mandelbrot is a mathematical set of
points whose boundary is a distinctive two-dimensional
fractal shape. Each parallel task works on a set of points, and
the synchronized block is then used when a task needs to
render the fractal image. This is done by calling the setRGB
method, available on the BufferedImage class, as showed
in Figure 9-(a).

4We used the perf linux tool to calculate cache misses, context switches,
and branch misses.

if (!isBenchmarking && mb.isLiveRendering) {
synchronized (mb.lock) {
mb.renderImage.setRGB(j, i, color.getRGB());

}
mb.repaint();

}
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Fig. 9. Example of an hidden over-synchronization (a) and a compari-
son of energy and performance, with and without synchronization (b), on
Mandelbrot

Figure 9-(b) shows the results for this benchmark, In this
benchmark, a task has a range of values of which it should
work on. For our input data (width: 1000, height: 10000), the
benchmark creates a total of 2,048 tasks. As we can see, there
is a great difference between the synchronized version and the
unsynchronized one. On average, the unsynchronized version
consumes 42% less energy then its counterpart (38% faster).

After inspecting the implementation, we observed that the
method setRGB is already synchronized, so there is no
need to use another synchronization construct to wrap up this
single method call. In fact, we could not find any visible
difference between the images generated by executions with
and without the synchronization. We sent the modified source
code as a patch to its developer, who then acknowledged the
over-synchronization and accepted our patch.5.

Bottleneck 6: Sleepy Workers A more extreme case — but
along the same line of Intra-Task Synchronization — is the
use of Thread.sleep during task execution. Just as the
previous bottleneck, the invocation of this thread management
primitive stalls stealing, and explicitly requests OS context
switches. From a logical perspective, the intention of the
programmer may be to put the task to sleep, but unfortunately,
the work stealing runtime will place the worker to sleep. As
described earlier, the worker cannot forgo the sleep-inducing
task and pick up other tasks from its deque; neither can the idle
CPU core help other workers of the same application. What is
worse is that unless the OS has other applications running, an
idle core under the widely used on-demand governor would
put the core in a low-power state, which later needs a long
time to wake up. In a work stealing runtime where competitive
performance is of its first priority, user-level sleeping is often
more detrimental than beneficial. We found 3 occurrences of
this bottleneck.

The CTask benchmark presents the worst scenario of this
bottleneck. During the sequential execution, this benchmark
puts every current task to sleep for a second. Figure 10 shows
this impact on both performance and energy consumption.

5https://github.com/catree/SimpleMandelbrotDemo/pull/1
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Fig. 10. A comparison on energy and Performance, with and without thread
sleeping, for varying numbers of threads in ctask.

The sleep construct creates significant penalties in both
performance and energy consumption. The execution without
sleep can be 13,495.26× more energy efficient than the
execution with (and 1,917× reduction in running time). After
inspecting the source code, we observed that the developer
used sleep to force the program to wait for a result from
another computation. However, this sleep is unnecessary, since
the computation on which the sleep is waiting is a synchronous
operation.

VI. DETECTING REFACTORING OPPORTUNITIES

Some bottlenecks can be detected and refactored automat-
ically. As a proof of concept, we have built a tool named
FJDETECTOR capable of automatically detecting and refac-
toring copy-related bottlenecks as explained in Bottleneck 2.

A. FJDETECTOR

FJDETECTOR works as a plugin for Eclipse IDE. It per-
forms source code analysis on FORKJOIN programs, focusing
on programs with divide-and-conquer data parallelism. We
check if the FORKJOIN computation is operated on a data
structure, such as array or ArrayList. Since most of
the ArrayList methods provide accesses over arrays, our
approach handles them in a similar way. FORKJOIN computa-
tions are usually described in terms of inner-classes, where the
data is passed through the inner-class constructor. Hence, for
each parameter of the constructor, we inspect (a) if it is a data
structure, (b) if it is splitted and copied inside the compute
method, and (c) if the variables containing the copy results are
passed into new instances of the Task class.

We identify potential divide-and-conquer programs through
pattern matching FORKJOIN’s compute method body.
Specifically, we are looking for a branching statement that falls
into one of three patterns.(1) sequential computation in the if
block and parallel computation in the else block; (2) parallel
computation in the if block and sequential computation in
the else block; and (3) sequential computation in the if
block plus a return at the end of the block, and the parallel
computation in the remainder of the method. FJDETECTOR
is not able to work with FORKJOIN classes structured in a
different manner.

Once a bottleneck is confirmed by the developer, FJDETEC-
TOR performs a set of transformations on the FORKJOIN code.
Our transformations remove copies by computing indices for
each subtask and letting them work on distinct regions of the
same (shared) data structure.

TABLE V
THE BENCHMARKS SELECTED. COLUMNS Add AND Del INDICATE THE
NUMBER OF ADDITIONS AND DELETIONS APPLIED BY FJDETECTOR.

“REP?” MEANS “REPLIED?” AND “ACC?” MEANS “ACCEPTED?”. THE
SYMBOLS X, × AND — MEAN, RESPECTIVELY, “ACCEPTED”, “NOT

ACCEPTED”, AND ‘NO RESPONSE”.

Projects Add Del Rep? Acc? Savings
itemupdown 13 7 — — 8.23%
jAcer 14 8 X X 4.21%
educational 13 17 — — 18.51%
scalatuts 12 6 X X 12.41%
knn 20 8 X X 21.3%
netflixoss 17 13 — × 2.18%
doms-transformers 20 9 X — 3.82%
ForkAndJoinUtility 13 6 X X 21.17%
exhibitor 21 15 X — 1.23%
Solitaire 14 5 — — 14.12%
javaOneBR-2012 13 4 X X 22.21%
mywiki 17 18 — — 16.12%
ejisto 18 9 X X 3.2%
cq4j 14 7 — — 11.23%
MagicSquares 12 11 X — 23.51%

B. FJDETECTOR Results
We have applied FJDETECTOR to 15 of the benchmarks

listed in §III. The benchmarks were selected due to the
presence of Bottleneck 2 (§V). Table V lists the selected
benchmarks. We assess FJDETECTOR in terms of the follow-
ing evaluation questions:

• EQ1. Is our approach useful?
• EQ2. How intrusive is FJDETECTOR?

Results of EQ1 To answer EQ1, we have sent modified
versions of the benchmarks to their developers as patches. If
these matches are useful, they will eventually be merged into
the benchmarks. To assess the intrusiveness of FJDETECTOR,
we measured the number of lines of code that FJDETECTOR
adds to and removes from the benchmarks in order to refactor
them. A large number of modifications makes the code harder
to understand and modify for its developers.

With FJDETECTOR, 18 instances of refactorings were per-
formed over 15 projects. We sent these modified versions
as patches to the owners of the corresponding repositories
via the pull request feature of Github. On Table V, columns
“Replied?” and “Accepted?” flag the projects that have replied
and accepted our patch. 9 projects have replied showing an
intention to accept our patch. One project is no longer actively
maintained (doms-transformers). For the remaining 8
projects that replied, 7 of them have already accepted and
merged our patches.

Benchmark netflixoss was the only project that closed
our pull request with no response. This particular project
seems to be a fork from another existing project (it has 231,361
lines of Java code performed by a single developer in a
single commit), and does not seem to be maintained anymore.
The owners of the remaining 7 projects did not provide any
comments for our patches.
Results of EQ2 To answer EQ2, we measured the number of
new statements that were added to and the number existing
statements that were deleted from the benchmarks. A large
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number of modifications can produce code that is hard to
understand and modify. So, a refactoring that results in a small
number of modifications is desirable.

Overall, our approach has added 231 statements and re-
moved 143 ones to the 15 benchmarks. Considering that
one of them has 4 instances of Bottleneck 2, the mean
number of modifications for each transformation was 12.8
additions and 7.9 deletions. Thus, our approach is not very
intrusive. Most of the additions are due to the addition of a
new constructor, which means that preexisting code, e.g., the
compute method, is the target of only a few modifications.
The refactoring of the parallel code added an average 5.3 new
statements. Deletions have different explanations. For instance,
most of the deletions on project exhibitor are due rewriting
the parallel computation (10 out of the 15 deletions). Initially,
this project used a more verbose approach, iterating through
the data structure, creating and forking each new parallel task,
and joining them at the end. We simplified this computation
by just using the invokeAll method, as shown Figure 11.

protected List<ServerStatus> compute() {
for (List<ServerSpec> subList : Lists.partition(

specs, size / 2)) {
Task task = new Task(exhibitor, subList);
task.fork(); tasks.add(task);

}
for (Task task : tasks) {
statuses.addAll(task.join());

}}

⇓
protected List<ServerStatus> compute() {
// ...
int split = (from + to)/2;
invokeAll(
new Task(exhibitor, specs, from, split),
new Task(exhibitor, specs, from + split, to)

);
// ...

}

Fig. 11. FJDETECTOR Refactor Example.

VII. RELATED WORK

Parallel programming is a well-established topic. In the
last decade, efforts have been made on introducing novel
programming models [23], [24], as well as performance [25],
[26], programmer effort, satisfaction and error-proneness [27],
[28] and even energy consumption [13], [29] evaluations.

There exists a considerable number of studies about the
characteristics of bugs in modern software systems, including
concurrency bugs [30], performance bugs [31], and, more
recently, bugs in the cloud [32], [33]. Closely related to this
work are empirical studies focusing on uses and misuses of
concurrent libraries have been conducted [34], [35], [36]. For
instance, the java.util.concurrent package, in which
the FORKJOIN framework resides, is the focus of a large-scale
study, covering over 2,000 projects [10]. However, this work
does not consider the FORKJOIN framework. Although the
work of Dig et al. [37] considered the FORKJOIN framework

when converting sequential code to parallel code, the authors
did not studied anti-patterns related to FORKJOIN usage.

Okur et al. [36] observed that misuses can account for 10%
of the overall uses of parallel libraries. In the worst case,
these misues can make the code run sequentially instead of
concurrently. Lin et al. [34] found that, even though Java’s
Concurrent collections provide thread-safe implementations,
when composing two or more operations, developers can
naı̈vely misuse these collections and introduce atomicity vio-
lations. Other studies propose tools that correct other common
mistakes (e.g., [35], [38]). These studies are complementary to
ours since none of them focus on the FORKJOIN framework.

A recent study [13] investigated the impact of three thread-
ing constructs on application energy consumption, one of
which is the FORKJOIN framework. This study found that
the energy consumption of a FORKJOIN program is sensitive
to the degree of parallelism achievable by the program: it
outperforms two other concurrent programming models in
applications that are embarrassingly parallel, but underper-
forms in the presence of large numbers of serial operations.
This study did not investigate specific bottenecks faced by
FORKJOIN applications.

Another study most closely related to our own was con-
ducted by DeWael et al. [39]. In this study, the authors
analyzed Java applications that employ FORKJOIN to under-
stand how real-world developers use ForkJoin. However, the
authors did not discuss on how the antipatterns identified
can be removed. Neither did they analyze the impact of the
antipatterns on energy consumption.

VIII. CONCLUSIONS

This paper describes a comprehensive study on parallelism
bottlenecks in FORKJOIN applications. Based on an in-depth
analysis over AKKA, together with 30 open-source FORKJOIN
applications on GitHub, we present a taxonomy of 6 bottle-
necks, whose removal and mitigation may lead to performance
improvement and energy savings. We sent our patches to the
developers of 15 projects, and 7 out of the 9 projects that
replied to our patches have accepted them.

The bottlenecks we have identified in this paper largely
group into three categories: thread management (Bottleneck
1), data management (Bottlenecks 2, 3, and 4), and synchro-
nization management (Bottlenecks 5 and 6). We believe the
applicability of identifying and overcoming these bottlenecks
may go beyond FORKJOIN. In the future, we plan to generalize
these findings, and investigate their applicability on other
multi-threaded language runtimes.
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