Energy Efficiency: A New Concern for Application
Software Developers

Gustavo Pinto
Federal University of Para

gpinto@ufpa.br

ABSTRACT

Energy efficiency is a problem that must be addressed at
all levels of the software stack. However, developing energy-
efficient software is not an easy task. In this paper we argue
that this is mostly due to two main problems: the lack of
knowledge and the lack of tools. These problems prevent
software developers from identifying, refactoring, fixing, and
removing energy consumption hotspots. We review how cur-
rent research in the area of software engineering is tackling
these two problems. Furthermore, based on an investiga-
tion on the problems faced by energy-aware developers, we
discuss avenues for future research in the area.
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1. INTRODUCTION

The prevalence and ubiquity of mobile computing plat-
forms such as smartphones, tablets, smartwatches, and smart-
glasses changed the way people use and interact with soft-
ware. In particular, these platforms share a common yet
challenging requirement: they are battery-driven. As users
interact with them, they tend to be less available, since even
simple, well-optimized operations (e.g., texting a friend) con-
sume energy. At the same time, wasteful, poorly-optimized
software can deplete a device’s battery much faster than
necessary. Heavy resource usage has been shown to be one
of the reasons leading to poor app reviews in online app
stores [22].

This concern, however, pertains not only to mobile plat-
forms. Big players of the software industry are also reach-
ing the same conclusion, as stated in one of the very few
energy efficient software development guides: “Fven small
inefficiencies in apps add up across the system, significantly
affecting battery life, performance, responsiveness, and tem-
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perature” . Corporations that maintain data centers strug-
gle with soaring energy costs. These costs can be attributed
in part to overprovisioning with severs constantly operating
under their maximum capacity (e.g., America’s data centers
are wasting huge amount of energy [15]), and to the devel-
opers of the apps running on these data centers generally
not taking energy into consideration [36].

Unfortunately, during the last decades, little attention has
been placed on creating techniques, tools, and processes to
empower software developers to better understand and use
energy resources. As a consequence, software developers
still lack textbooks, guidelines, courses, and tools to refer
to when dealing with energy consumption issues [36, 45].
Moreover, most of the research that connects computing and
energy efficiency has concentrated on the lower levels of the
hardware and software stack. However, recent studies show
that these lower level solutions do not capture the whole
picture [2, 9, 25], when it comes to energy consumption. Al-
though software systems do not consume energy themselves,
they affect hardware utilization, leading to indirect energy
consumption.

1.1 How is software related to energy consump-
tion?

Energy consumption E is an accumulation of power dis-
sipation P over time ¢, that is, £ = P x t. Power P is
measured in watts, whereas energy FE is measured in joules.
As an example, if one operation takes 10 seconds to complete
and dissipates 5 watts, it consumes 50 joules of energy. In
particular, when taking about software energy consumption,
one should pay attention to:

e a given software system under execution,
e on a given hardware platform,

e on a given context,

e during a given time.

To understand the importance of a hardware platform,
consider an application that uses the network. Any com-
modity smartphone nowadays supports, at least, WiFi, 3G,
and 4G. A recent study observed that 3G can consume about
1.7x more energy than WiFi, whereas 4G can consume about

"https://developer.apple.com/library /content/
documentation/Performance/Conceptual /power_
efficiency_guidelines_osx/index.html#//apple_ref/doc/
uid /TP40013929



1.3x more energy than 3G, while performing the same task,
on the same hardware platform [23].

Context also plays a key role, since the way software is
built and used has a critical influence on energy consump-
tion. For instance, software can stress energy consump-
tion on CPUs, when performing CPU-intensive computa-
tions [46], on DRAMSs, when performing random accesses
to data structures [34], on networks, when running several
HTTP requests [28, 9], and on displays, when using lighter
backgrounds [29, 32] or playing videos.

Finally, time plays a key role in this equation, A common
misconception among developers is that reducing execution
time also reduces energy consumption [45, 36|, the ¢ of the
equation. However, chances are that this reduction in exe-
cution time might increase the number of CPU cycles (e.g.,
using multi-core CPUs) and, therefore, the number of con-
text switches. This, in turn, might increase the P of the
equation, impacting the resulting energy consumption.

1.2 Software engineering meets energy consump-

tion

While the strategy of leaving the energy consumption op-
timization problem to the lower-level layers has been suc-
cessful, recent studies show that even better energy savings
can be achieved by empowering and encouraging software
developers to participate in the process [23, 34, 42, 9]. How-
ever, the application level, which is the focus of most main-
stream software being developed these days, has been the
target of few studies.

This lack of studies was observed in a recent paper [48],
where the authors surveyed the papers published during a
period of 10 years in top software engineering venues, and
found only 20 research papers that have “power” or “energy”
on their titles or abstracts. More interestingly, however, the
authors observed that none of them were published before
2012. In 2012, 3 papers were published, whereas 6 papers
were published in 2013 and 11 papers in 2014. That shows
the emerging character of the field.

The need for studies that focus on the higher levels of
the software stack is important from at least two important
perspectives:

Software engineer’s perspective. Battery usage is a key
factor for adopting and evaluating mobile applications.
Users of an energy-inefficient app might review it badly,
encouraging other users not to use it. This can nega-
tively impact the app’s revenue.

End user’s perspective. The last mile in energy efficiency
comes from the choices of end-users. To make better
choices, and further minimize energy consumption, end
users should be aware of the different energy charac-
teristics of software applications that serve the same
purpose.

This paper. This paper is a review of the most promi-
nent software engineering approaches for writing, maintain-
ing, and evolving energy-efficient software applications. We
organize the contributions according to the Guide to the
Software Engineering Body of Knowledge (SWEBOK) [1], a
common practice in software engineering studies (e.g., [39]).
When conducing such review, we found that the literature
does not cover well certain areas of the SWEBOK. For these

cases, we share our visions of possible research avenues that
energy-aware researchers can follow to reduce this gap.

The rest of the paper is organized as follows: Section 2
unveils the perceptions of mobile developers when dealing
with energy consumption issues, scratching their problems
and possible solutions. Section 3 acknowledges that most
of the energy-related problems, in fact, can be reduced to
two main problems: the lack of knowledge and the lack of
tools. Section 4 surveys recent literature to understand how
software engineering researchers are tackling these two prob-
lems. Section 5 concludes this work.

2. A FORMATIVE STUDY

Energy consumption issues are now knocking on the door
of application software developers. To shed light on this
matter, similarly to Pang et al. [42], we conducted a sur-
vey with software developers to understand their percep-
tions about software energy consumption issues. Differently
from this previous paper, which surveyed a wide range of
software developers, our target population is more focused
and consists of 62 software developers who have performed
at least one commit to a mobile open-source application.

Among the respondents, 68.75% have more than 8 years
of software development experience, 57.81% have more than
2 years of mobile development experience, and 77.41% have
more than 2 years of open-source development experience.
The majority of them (57.8%) are source code contributors
or project owners (35.9%). More interestingly, 70.31% of
the respondents agree that energy consumption could be an
issue in their mobile applications. Also, 37 respondents have
already faced energy-related problems, as a respondent said:
“We have a limited energy envelope for the whole system
and we must make sure even our power hungry components
don’t cause the system to go beyond this limit”. Also, some
respondents are aware that energy inefficiencies can impact
on app popularity and, therefore, revenue: “Users will leave
bad reviews if you drain the battery”.

When asked if they found the root cause for the energy-
related problems, 50% of the respondents did not answer.
For those who answered, background activities, GPS, and
unnecessary resource usage are among the recurring answers.
Interestingly, these problems were also observed in other
studies [45, 36]. However, 31.81% of the respondents did not
observe any significant improvement in energy consumption
after applying their solutions. For those who observed an
improvement, only 5 of them made use of specialized tools.
The majority of them have the perception of an improve-
ment, e.g.: “The battery is lasting longer”, “Less heat from
device”, or “I really do not measure before and after. It’s just
a perception”. When we asked where they find reliable in-
formation about what solutions can be used to save energy,
7 of them refer to the official documentation, 5 of them use
StackOverflow, and 5 use other channels (blogs, youtube,
open-source repositories). Unfortunately, the solutions de-
scribed in such sources of documentation often are not sup-
ported by empirical evidence [45, 38]. To make the matter
worse, two respondents rely on “Trial and error”, which is
far from being accurate.

Moreover, 67% of the respondents said that energy-related
features are “important” or “very important” to have in well-
known IDEs. Only 8 of the overall respondents have actu-
ally used software energy consumption tools. Respondents
said that the most important energy-related features to have



in well-known IDEs are profiling tools (16 answers), vary-
ing from CPU, network, method, wakelocks, thread, and
live profile. Indeed, one respondent synthesize that well-
known IDEs, such as Android Studio, lack these features:
“Android Studio needs a good energy profiler to check the
Android power consumption from all power consumers (ra-
dios, CPU, memory, storage, everything).” These results
not only corroborate with the findings of Pang et al. [42],
but also reinforce that application-level energy management
is in high demand among application software developers,
although better support is urgently needed.

We also asked five leading researchers in the area of Soft-
ware Energy Consumption what are, on their opinions, the
most significant contributions and biggest open challenges in
this area. All the researchers agreed that tool support is still
lacking when it comes to energy measurement, reengineer-
ing, refactoring, and other related activities. Even though
there is a recent interest from IDE builders to provide an
energy consumption perspective of the software systems un-
der development?, this finding suggests that there is much
to do still.

3. ENERGY-RELATED PROBLEMS

As observed in our formative study, software develop-
ers currently have to rely on Q&A websites, blog posts, or
youtube videos when trying to optimize energy consump-
tion, which are anecdotal, not supported by empirical ev-
idence, or even incorrect [24, 36]. The consequence of the
lack of appropriate textbooks, guidelines, and cookbooks for
green software development is the Lack of knowledge on how
to write, maintain, and evolve energy-efficient software ap-
plications. Furthermore, our respondents also mentioned
that they believe that energy-related features are very im-
portant to have in well-known IDEs. In particular, energy
profiling techniques can be very helpful. This lack of energy-
related features incurs in the Lack of tools to find, refactor,
and fix energy-inefficient code.

The lack of knowledge and the lack of tools to write energy-
efficient software is also discussed in the literature. For
instance, Pinto et al. [45] noticed that a common miscon-
ception is to confuse concepts such as “power” and “en-
ergy”. Manotas et al. [36] observed that developers believe
in panaceas, that is, solutions that are presented as univer-
sal but, in fact, only work in specific contexts. For instance,
while one developer suggested “offloading computation to
the cloud” as a way to improve energy consumption, another
developer mentioned “decreased radio use increases battery
life”. As a result, developers should consider the underlying
thresholds to take proper advantage of each solution. These
are examples of lack of knowledge. To further complicate
matters, optimizing performance does not always help to
save energy [25, 26, 31, 46]. Thus, the extensive perfor-
mance textbooks and guidelines are not always useful.

The aforementioned lack of knowledge is intrinsically con-
nected to the lack of tools. Moura et al. [38] observed
that energy-aware developers often employ low-level solu-
tions that sometimes result in hard-to-detect correctness
problems. The following commit message provides an ex-
ample of a correctness problem: “Disable Auto Power Sav-

2https://developer.apple.com/library /ios/documentation /
Performance/Conceptual /EnergyGuide-iOS/
MonitorEnergyWithXcode.html

ing when resetting the modem. This can cause several bugs
with serial communication™. High-level energy saving tools
might be useful in mitigating this problem. In addition,
Pang et al. [42] found that 88% of the respondents of their
survey do not know what tool they can use to measure the
energy consumption of their software. These are examples of
lack of tools. Although software energy consumption tools
do exist, they have yet-to-be-addressed limitations:

e They require an in-depth knowledge of low-level imple-
mentation details and programmers under time pres-
sure have little chance to learn how to use them;

e They do not provide direct guidance on energy opti-
mization, i.e., bridging the gap between understanding
where energy is consumed and understanding how the
code can be modified in order to reduce energy con-
sumption.

The next section discusses how current software engineer-
ing research is addressing these two key problems.

4. ENERGY-RELATED SOLUTIONS

Since there is no single solution for conserving energy, we
organize the contributions in terms of the topics of the SWE-
BOK [1], a common practice in software engineering studies
(e.g., [39]). Although energy consumption can be related to
any software engineering topic, we chose to focus only on
topics directly related to software coding, since (1) it is one
of the main activities of software developers, and (2) it is the
target of most of the recent research contributions. There-
fore, we do not cover the following topics: software con-
figuration management, software engineering management,
software engineering process, and software requirements.

4.1 Software Tools & Methods

We organize our discussion of software engineering tools
and methods in terms of enhancement methods, measure-
ment tools, and static analysis tools.

Enhancement methods. These methods refer to energy
saving techniques that developers can use, even though they
have no prior knowledge of the application domain. For in-
stance, software developers often leverage modern CPUs to
dynamically change their operating frequencies, thus reduc-
ing power dissipation [38]. However, when applying this
technique, software developers should use low-level system
interfaces, which are error-prone and platform dependent.
Notwithstanding, blindly downscaling CPU frequency might
increase energy consumption while reducing performance [34,
20]. This is an important example of the lack of tools. To
mitigate this problem, novel approaches are based on dy-
namic adaptation through an energy profiler module, energy
policies, and energy adaptation APIs [49, 50]. The energy
profiler module can recognize the system states and estimate
the energy potentially demanded by an application.
Another example is method reallocation [10], which refers
to the analysis of a software system considering all the levels
of the stack (e.g., kernel, library, and source code level), and
reorganizing the classes and methods through the levels of
the stack, in a way in which they can be placed in the level
where the energy consumption is minimal. As a limitation,
this technique can be utilized only if the operating system

3https://github.com/alobo/Serial GSM/commit /c616b950




and the software development environment allow applica-
tion software developers to go through the different levels
(e.g., from source code level to kernel level). In a similar
strategy, cloud offloading [23] is a technique in which heavy
computations are sent to a remote computer; after the re-
mote execution the result is sent back to the local machine.
This approach aims to re-organize the implementation of the
system at the source code level, thus saving energy by min-
imizing processing. Interestingly, when we asked if the re-
spondents found any solution to overcome the energy-related
problems, one of the respondents said that “Offioad inten-
sive work to workers in the cloud.” However, this technique
is only effective if the savings can compensate the extra en-
ergy toll required to send a computation through a network.
Therefore, trade-offs exist and, as we have discussed in Sec-
tion 1.1, different components have different energy usage
characteristics.

Measurement tools. Some measurement tools include
methods that use data collected from different system in-
terfaces to assess the energy consumption at the applica-
tion level. One example is the Running Average Power
Limit (RAPL). This module enables architectures monitor
energy consumption and store it in Machine-Specific Regis-
ters (MSRs*). Several energy-consumption studies are based
on this module (e.g., [30, 34, 47]). With such techniques,
it is possible to profile a system and analyze, for instance,
what are the system calls that have a major contribution
to power dissipation [10, 34]. System calls, in particular,
are being actively used for predicting and estimating energy
consumption of a software system [3, 2, §].

Other tools leverage energy models. This strategy uti-
lizes a model developed by physically measuring the energy
consumption of a device [17, 23, 26]. Energy models have
a higher level of confidence only when approximating the
energy consumption on the hardware based on which the
model was created. Other hardware architectures can only
consider the model as a rough estimation.

Although there are already some software tools for energy
measurement (e.g., [26, 17]), such tools have well-known
drawbacks. First, energy measurement tools may pay an
additional overhead on energy consumption, mostly due to
the sampling mechanism. Data acquisition (i.e., sampling)
is the result of the process of acquiring information from the
surrounding environment, processing the data, and send-
ing it to another collection point to be consumed. There-
fore, sampling techniques might impact energy consump-
tion. This poses a challenge, since a recent study provides
evidence that a high sampling rate is necessary to obtain
reliable information [51]. Even though this problem can be
circumvented by employing software-based measurement ap-
proaches [34], these approaches are often regarded as less
rigorous than hardware-based ones.

Second, hardware- and software-based approaches often
do not provide the granularity level that application soft-
ware developers are interested in [45, 36]. For instance,
there is no tool support to measure energy consumption
per thread per system module. It is difficult to link the
energy measurements across the running threads with fine-
grained events that happen during program execution, such
as method calls. To make matters worse, the tail energy —
i.e., the high power state that remains long after the usage

*https://01.0rg/msr-tools/overview

of a hardware component, such as the GPS [26] — should
be taken into consideration, even in the presence of con-
text switches. As a result, there is a mismatch between the
noise introduced by coarse-grained measurements and the
tiny energy impact of methods calls. Still, in our survey, 11
respondents mentioned that measurement tools are among
the most important energy-related features to have available
in well-known IDEs.

Static Analysis tools. One of the main challenges of soft-
ware energy consumption research is to bring analysis to
the static level. Currently, software energy consumption in-
strumentation can only be conducted at runtime. This ap-
proach has several limitations, such as sophisticated (and
expensive) hardware equipments [46] or applicability only
to specific hardware configurations [34]. This fact has the
potential of limiting the usability of software energy con-
sumption tools.

Although there are few studies in this direction (e.g., a
static analysis technique for estimating the energy consump-
tion of embedded programs [33]), these tools (1) often com-
bine static analysis with dynamic analysis techniques (e.g., [26,
28]), which makes them hardware-dependent, and (2) do not
exhibit maturity, nor the breadth of scope necessary for use
in real software development. One of the main challenges for
deriving static analysis tools for energy consumption is the
need for a body of knowledge on how language constructs
and design decisions impact energy consumption. Due to
the emerging character of the field [48], we believe that new
empirical energy consumption studies will be conducted in
the following years, which in turn will help researchers to
create such static analysis tools.

4.2 Software Maintenance

We organize our discussion of software maintenance in
terms of refactoring, reengineering, and visualization.

Refactoring. Refactoring tools can take advantage of cutting-

edge research and incorporate such knowledge into refac-
toring engines. However, as a researcher respondent said,
“There is a lot of work showing how different programming
styles, techniques, structures influence the consumption, but
there is still no real cataloging [..] based on these concrete
software practices”. Although researchers have been specu-
lating on this subject during the last years [14], to the best of
our knowledge, there is only a handful of studies that deals
with the problem of introducing novel refactoring tools for
improving the energy efficiency of a software system [5, 12].
In one of these studies, the authors present a set of energy-
efficiency guidelines that are specifically tailored for Android
apps, such as location updates and resource leaks. When ap-
plied, the authors observed improvements of up to 29% of
the overall energy consumption.

This lack of contributions is not related to a lack of op-
portunities, though. As mentioned before, there are several
opportunities for application software developers to save en-
ergy by refactoring existing systems [19, 48]. As two ex-
amples, Pinto et al. [47] observed that just updating from
Hashtable to ConcurrentHashMap in a Java program can
yield a 3.5x energy savings. In particular, this transfor-
mation yields a 1.4x and a 9.2x energy savings in CPU and
DRAM, respectively. As another example, Pathak et al. [43]
observed that I/O operations consume more energy partly
because of the tail energy phenomenon. According to the
authors, this tail energy leak can be mitigated by bundling



1/0 operations together. These results have a clear implica-
tion: Tools to aid developers in quickly refactoring programs
can be useful if energy is important.

Reengineering. Differently from Refactoring tools, which
are more localized, reengineering efforts can be broader in
scope and have a systemwide impact on the structure of
an application. As mentioned, method reallocation [10] and
method offloading [23] are two common strategies to imple-
ment reenginering energy-aware methods. This is corrobo-
rated by the work of Othman et al., which found that up to
20% energy savings can be achieved by uploading tasks from
mobile devices to fixed servers [41]. Using a different strat-
egy, Manotas et al. [37] proposed SEEDS, a general decision-
making framework for optimizing software energy consump-
tion. The SEEDS framework can identify energy-inefficient
uses of Java collections, and automate the process of select-
ing more efficient ones. Along the same lines, Fernandes et
al. [13] developed a tool that leverages static and dynamic
analysis to recommend the most energy-efficient data struc-
tures. Search-based software engineering approaches were
used to reengineer a software system in order to minimize
energy usage [6], yielding an energy reduction of up to 25%.
These approaches mitigate the problem of lack of tools.

Visualization. Visualization techniques are useful to sup-
port the understanding of software systems in order to dis-
cover and analyze their anomalies. Li et al. [26] proposed
a technique that overlays energy consumption information
with application’s source code. This technique colors dif-
ferent amount of energy consumed in a given line of code
— blue lines describe low energy consumption whereas red
lines indicate high energy consumption. This visualization
technique is fine-grained and works at the source code level.
On the other hand, the study of Couto et al. [11] focuses on
a coarser granularity: It identifies the energy consumption
per method, and aggregates this energy in terms of classes,
packages, and the whole software system. The result is pre-
sented in a sunburst diagram, which allows developers to
easily and quickly identify the most energy inefficient parts
of the code. These studies combine art and technology as a
way to represent energy consumption. With a better under-
standing of the whole program energy behavior, such visu-
alization techniques can be useful to mitigate both lack of
knowledge and lack of tools.

4.3 Software Design & Construction

Researchers have been studying different strategies for de-
signing and constructing energy-efficient software [16, 25, 29,
31, 43]. These studies focus on understanding how a partic-
ular programming practice or design implementation might
impact on energy consumption. To gain further confidence
in the results, these studies often analyze dozens (e.g., [20]),
or even hundreds (e.g., [25]), of software applications, and
they mitigate the lack of knowledge by providing high-level
guidelines for designing energy-efficient software. We orga-
nize our discussions of software design & construction in
terms of mobile, network, data structures, and parallel pro-
gramming techniques.

Mobile development. Linares-Vasquez et al. [31] inves-
tigated API calls that might cause high energy consump-
tion. For example, they observed that the method Activ-
ity.findViewById, which is commonly used, is one of the
most energy-consuming among the Android APIs. Simi-
larly, Malik et al. [35] found that the BroadcastReceiver

and the Location APIs are the most often discussed among
Android energy questions on StackOverflow. Furthermore,
since the display is one of the smartphone’ most energy-
intensive components [7], Li et al. [29] discussed how to im-
prove energy efficiency by favoring darker colors instead of
lighter ones for smartphones with OLED displays. Using a
search-based multi-objective approach, Linares-Vasquez et
al. [32] automatically optimized energy consumption and
contrast, while using consistent colors with respect to the
original color palette. Oliveira Jr. et al. [19] analyzed the en-
ergy consumption of Android app development approaches,
Java, JavaScript, and Java + C++, in both benchmarks and
real apps. In both scenarios it was observed that different
approaches have different impacts on energy. In particular,
combining different approaches can yield more than an order
of magnitude energy savings in compute-intensive apps.

Network usage. Li et al. [25] analyzed more than 400
real-world Android apps, and found that an HTTP request
is the most energy-consuming operation of the network. In
a followup study, the same authors observed that bulking
HTTP requests is a good practice for energy saving [28].
Also regarding HTTP usage, Chowdhury et al. [9] observed
that HTTP/2 is more energy efficient than its predeces-
sor, HTTP/1.1, for networks with higher Round Trip time
(RTTs). Since most mobile apps use network [25], we expect
more contributions on this direction. Besides of bulking re-
quests, researchers can evaluate the benefits of, for instance,
reducing transactions, compressing data, and appropriately
handling errors to conserve energy.

Data Structures. The energy behavior of different data
structures, one of the building blocks of computer program-
ming, have been extensively studied in the last few years [47,
37, 16, 30]. Hasan and colleagues [16] investigated data
structures grouped with three interfaces (List, Set, and Map).
Among the findings, they found that the position where an
element is inserted in a list can greatly impact energy con-
sumption. Pinto et al. [47] studied the same group of inter-
faces, but focused on thread-safe data structures. They also
observed that using a newer version of a thread-safe data
structure can yield a 2.19x energy savings when compared
to the old associative implementation. Lima et al. [30] stud-
ied the energy consumption of data structures in concurrent
functional programs. Although they found that there is no
clear universal winner, in certain circumstances, choosing
one data sharing primitive (MVar) over another (TMVar)
can yield 60% energy savings.
Parallel Programming. Parallel programming techniques
have also been the subject of several studies. Pinto et al. [46]
observed that a high-level, work-stealing parallel framework
is more energy-friendly when performing fine-grained CPU-
intensive computations than a thread-based implementation.
Still, Ribic and Liu proposed a set of runtime systems for im-
proving the energy efficiency of fine-grained CPU-intensive
computations [49, 50]. To better leverage the energy savings
reported by these studies, we believe they can be integrated
with well-known runtime systems, such as the Java Virtual
Machine (JVM). If so, the whole chain of programming lan-
guages, software systems, and end-users that rely on the
JVM can benefit from these findings.

Although these studies provide a comprehensive set of
findings with practical and timely implications and can be
useful to mitigate the problem of lack of knowledge, they



are far from covering the whole spectrum of programming
language constructs and libraries.

4.4 Software Quality & Testing

Here we organize our discussions in terms of software test-
ing and software debugging techniques.

Software Testing. Although there are several studies aimed
at characterizing energy bugs (e.g., [44]), there are rela-
tively few studies that propose new energy-aware testing
techniques [27, 18, 21]. Ding and colleagues [27] presented
an energy-efficient testing suite minimization technique that
can be used to perform post-deployment testing on embed-
ded systems. Results suggest that the approach can pro-
mote a reduction of over 95% of the energy consumed by
the original test suite. Similarly, Jabbarvand et al. [18]
present another test suite minimization approach, but fo-
cusing on Android apps. The authors reported a reduction
of, on average, 84%, while maintaining the effectiveness for
revealing bugs. Kan [21] proposes a similar approach: To
use DVFS to scale frequency down when running the test
suites. Although some researchers argued that DVFS tech-
niques can lead to increased energy consumption and perfor-
mance loss [34], the authors showed that important energy
savings can be achieved. Banerjee et al. [4] proposed a tech-
nique that generates test inputs that are likely to capture
energy bugs. This technique focuses on creating tests that
use I/O components, which are one of the primary sources
of energy consumption in a smartphone [7, 43].

Followed by these promising initial results, we believe that
new testing techniques will be evaluated in terms of energy
consumption. At best, energy testing will become a research
area. Several possible areas of interest can be envisioned.
One of them is what we call “green assertions”, that is, the
possibility to define an energy budget where the test case
asserts whether the computation satisfies that budget. The
test fails if the energy consumed is greater than the sug-
gested budget. For instance, the code snippet double max-
Energy = 200; assertTrue(render(), expected, maxEn-
ergy) ; defines that the render () method should consume,
at most, 200 Joules. This technique can be further improved
to cover additional hardware characteristics, for instance, as-
serting whether the computation consumes 100 Joules due
to network communication or 50 Joules due to the CPU.

Software Debugging. Practitioners commonly use de-
bugging tools to catch bugs in program formulation. How-
ever, debugging an energy-inefficient piece of code is more
challenging than traditional debugging because such ineffi-
ciencies depend on the contextual information about where
a program is running, such as the state of the hardware
devices. In this regard, Banerjee and colleagues [5] pro-
pose a framework for debugging energy consumption-related
field failures in mobile apps. The authors found that tool
support could localize energy bugs in a short amount of
time, even for non-trivial Android apps. The authors ob-
served energy savings of up to 29% after patching the en-
ergy bug. Pathak et al. [43] propose eprof, a fine-grained
profiling energy consumption technique for applications run-
ning on smartphones. Similar to the work of Banerjee and
colleagues [4], Pathak et al. focus on understanding and
monitoring system calls that are related to 1/O operations.
As a results, they found that most of the energy consumed
in free apps is related to third-party advertisement modules
(which can be responsible for up to 75% of the overall en-

ergy consumed by an app). Using a collaborative black-box
approach, Oliner et al [40] propose a method for diagnos-
ing anomalies, estimating their severity, and identifing the
device features that lead to the anomaly. Using feedback
received by the proposed tool, end users improved their bat-
tery life by 21%.

We believe that debugging tools will have the capability
of inspecting the energy consumption of fine-grained pro-
gram constructs during runtime, as well as their common
ability to identify which value was attributed to a given vari-
able. Debugging tools can go further and highlight the CPU-
intensive lines of code, or the memory-intensive methods, in
a way that developers can refactor them in an energy-savvy
manner. Novel energy-related testing and debugging tools
can mitigate the lack of tools.

5. CONCLUSIONS

Energy consumption is a ubiquitous problem and the years
to come will require developers to be even more aware of it.
However, developers currently do not fully understand how
to write, maintain, and evolve energy-efficient software sys-
tems. In this study we suggest that this is primarily due to
two problems: the lack of knowledge and the lack of tools.
With these problems in mind, this paper reviews most of the
recent energy-related contributions in the software engineer-
ing community. We discuss how software energy consump-
tion research is evolving to mitigate these two problems and,
when appropriate, we highlight key research gaps that need
better attention.
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