Who Gets a Patch Accepted First?
Comparing the Contributions of Employees and Volunteers

Gustavo Pinto
Federal University of Para
Belém, PA, Brazil
gpinto@ufpa.br

ABSTRACT

Although many software companies have recently embraced Open
Source Software (OSS) initiatives, volunteers (i.e., developers who
contribute to OSS in their spare time) still represent a wealthy
workforce that have the potential of driving many non-trivial open
source projects. Such volunteers face well-known barriers when
attempting to contribute to OSS projects. However, what is still
unclear is how the problems that volunteers face transcend to the
problems that employees (i.e., developers hired by a software com-
pany to work on OSS projects) face. In this paper we aim to in-
vestigate the differences on the acceptance of patches submitted
by volunteers and employees to company-owned OSS projects.
We explore different characteristics of the patches submitted to
company-owned OSS project, including: the frequency of accep-
tance and rejection; the total time to review and process a patch,
and; whether the changes proposed follow some contribution best
practices. We found that volunteers face 26X more rejections than
employees. Volunteers have to wait, on average, 11 days to have a
patch processed (employees wait 2 days, on average). 92% of the
dormant pull-requests (e.g., pull-requests that take too long to be
processed) were submitted by employees. Finally, we observed that
the best practices that had the patches are most adherent to is
“commit messages need to be written in English.”

KEYWORDS
Company-Owned OSS Projects; Employees; Volunteers

ACM Reference Format:

Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. 2018. Who Gets
a Patch Accepted First? Comparing the Contributions of Employees and
Volunteers. In CHASE’18: CHASE 18:IEEE/ACM 11th International Workshop
on Cooperative and Human Aspects of Software , May 27, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3195836.
3195858

1 INTRODUCTION

Along the last decades, Open Source Software (OSS) development
was often regarded as a voluntary activity [9],in which developers
spend their own free time to construct/design/test/refactor projects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHASE’18, May 27, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5725-8/18/05...$15.00
https://doi.org/10.1145/3195836.3195858

Luiz Felipe Dias
University of Sdo Paulo
Sao Paulo, SP, Brazil
fronchetti@usp.br

Igor Steinmacher
UTFPR, Campo Mouréo, PR, Brazil
Northern Arizona University, USA

igorfs@utfpr.edu.br

However, the last few years introduced fundamental changes on
how OSS is developed. These changes are mostly due to the wave
of software companies that started not only to embrace OSS initia-
tive (e.g., fostering hackathons or code jams), but also supporting
and releasing OSS [10]. As a notable example, Google alone has
contributed to more than 2,000 OSS projects!. As a consequence,
OSS contributors are now a mix of both volunteers and employees
(i.e., developers hired by a company to contribute to OSS projects).

However, what is so far not clear is how these contributions,
made by developers with conflicting interests, differ. This is particu-
larly relevant in the pull-request? era, in which everyone interested
in contributing to an OSS project might follow the same process
(e.g., filling a pull-request with the proposed change) and are subject
to the same scrutiny from their peers (e.g., during review cycle). In
this scenario, one might believe that since employees have more
access to integrators [6] chances are that they are more likely to
have a contribution reviewed and processed faster than volunteers,
who are in the other side of the wall and have less communication
channels to bring integrators’ attention to their patches. Unfortu-
nately, delay to process a patch is only one possible side effect. In
this paper we studied this and some other characteristics related to
patches submitted by employees and volunteers.

We used a convenience sample to find five GitHub-owned projects:
atom, electron, hubot, git-1fs, and linguist. We chose these
projects because they were initially developed by (and are main-
tained at) GitHub, therefore we could take advantage of GitHub
features to understand whether a contributor is a employee or a vol-
unteer (more details at Section 2.2). Through an extensive analysis
of ~12k patches submitted, we evidenced contribution behaviors
that are intrinsic for each particular kind of contributor.

2 METHOD

In this early report, we studied three research questions:

RQ1: Do volunteers have to try more than employees to
have a patch accepted? In this question we investigated the num-
ber of attempts that volunteers and employees have made to con-
tribute to company-owned OSS. We hypothesize that volunteers
have a higher rate of non-accepted contributions.

RQ2: Do volunteers have to wait much more than employ-
ees to have a patch processed? Here we inspected the number
of days that a patch takes to receive a decision (accept or reject).
We hypothesize that volunteers have a higher rate of dormant
patches(i.e., patches that take too long to be processed).

!https://opensource.google.com/
2Throughout this paper, we employ the terms “pull-request” and “patch”
interchangeably.

https://doi.org/10.1145/3195836.3195858
https://doi.org/10.1145/3195836.3195858
https://doi.org/10.1145/3195836.3195858
https://opensource.google.com/

CHASE’18, May 27, 2018, Gothenburg, Sweden

RQ3: Do volunteers follow contributing best practices? Here
we employed three well-discussed best practices [1, 5, 6, 13-15]:
(1) The contribution should be small (BP1) [5, 15]; (2) The contri-
bution should be accompanied with test cases (BP2) [6, 14]; and
(3) the contribution should have a descriptive commit message
(BP3) [1, 13]. We hypothesize that volunteers do not follow most
of the best practices.

2.1 Mining Repositories Data

First, to differentiate employees and volunteers, we relied on GitHub
site_admin flag. This flag is set to GitHub users that are GitHub
employees. Therefore, for any user that does not work for GitHub,
this is set to false. Consequently, we used this flag to categorize
employees and volunteers in the analyzed OSS projects, which are
owned by GitHub (the company).

For each project, we collected data of the pull-requests using
GitHub APIL. We ended up with a list of 11,895 pull-requests: 5,143
submitted by employees, and 6,742 by volunteers. For each pull-
request, we considered the three possible statuses for our analysis:

e open: waiting for code reviews and/or a final decision;

e closed: the code reviews were done, but the pull-request was
not accepted (the status in GitHub is closed/unmerged);

o merged: the code reviews were done, and the pull-request
was accepted (the status in GitHub is closed/merged).

For each pull-request, we payed particular attention to:

e the number of commits per pull-request;
o the number of changes per pull-request;
e the commit message, and;

o the time taken to process the pull-request.

The data reported in this paper is based on pull-requests per-
formed from the very beginning of the studied projects, up to Janu-
ary, 2018 — when we collected the data. All data used in this study
is available online at the companion website>.

2.2 Studied Projects

In this study, we characterize our sample as multiple cases of
company-owned OSS. To define our sample, we searched for soft-
ware companies that have made some of their software publicly
available as OSS. However, as a constraint of our approach (as we
discussed in Section 2.1), we have to focus our search on projects
developed by GitHub (the company) at GitHub (the social coding
website). We studied five projects in this regard:

e atom, a cross-platform text editor. It has ~34,300 commits,
~3,750 pull-requests, 400 contributors, ~43,000 stars, and
~8,400 forks. It is mostly written in JavaScript and Coffee-
Script, and has ~6 years of historical records.

e electron, a tool to build cross platform desktop apps with
JavaScript, HTML, and CSS. It has ~18,000 commits, ~3,800
pull-requests, 721 contributors, ~56,000 stars, and ~7,200
forks. It is mostly written in C++, and has ~4 years of his-
torical records.

e hubot, a customizable life embetterment robot. It has ~2,000
commits, ~700 pull-requests, 253 contributors, ~13,700 stars,

Shttps://github.com/fronchetti/ CHASE-2018

Pinto et al.

and ~3,200 forks. It is mostly written in JavaScript, and has
~6 years of historical records.

e git-1fs, a git extension for versioning large files. It has
~6,300 commits, ~1,300 pull-requests, 99 contributors, ~5,300
stars, and ~900 forks. It is mostly written in Go, and has ~4
years of historical records.

e linguist, a library to detect blob languages. It has 5.600
commits, ~2,400 pull-requests, 684 source code contributors,
~5400 stars, and ~2,000 forks. It is mostly written in Ruby,
and has ~6 years of historical records.

We used the cloc? utility to calculate the Lines of Code (LoC).
It includes code from all the languages in which a project was
developed, as well as blank lines and commented lines. The largest
project is linguist, with 203K lines of code. atom is the project
with the greatest number of commits (343K), while linguist is the
project with the greatest number of unique committers (688). With
regard to their popularity, electron is the most stared (56K) and
atom is the most forked one (13K).

3 RESULTS

This section presents reports the results obtained from both reposi-
tory mining and manual patch analysis.

3.1 RQ1: Do volunteers have to try more than
employees to have a patch accepted?

We analyzed the number of rejected patches for both employees and
volunteers. We found 1,453 unique volunteers and 56 employees
that have patches rejected. We found that most of the developers
have very few rejections. This is particularly true for volunteers,
which usually do not provide many patches if they have already
a patch rejected [14]. The average number of patches rejected per
volunteer is 1.42 (median=1, q3=1). At an extreme case, in project
electron, we found one volunteer that had 29 rejected patches. We
hypothesize that this high number of rejections from volunteers
are because volunteers might be motivated by particular needs,
which might not be necessarily aligned with the project’s roadmap.
This can also be related to the way the project integrators merge
pull-requests, like cherry-picking commits or using Command Line
Interface to merge particular commits [14]. In contrast, employees
are more likely to have more rejected patches; the average number
of patch rejected per employee member is 5.78 (median=2, q3=7).
Similarly, one employee had 54 patches rejected. We believe that
this happens due to the role that each type of contributor have in
the project: volunteers might not have strong ties with the project
that they are contributing to, and in the face of rejections, they may
become demotivated [14], and may not contribute anymore. In fact,
1,200 (82%) volunteers have tried only once.

The project hubot is the one with the highest number of volun-
teers’ patches rejected (64% of the patches were rejected). In the
same project, we found that only 2% of patches from employees
were rejected. On the other hand, project atom has the highest
number of patches rejected for employees (52% of the patches were
rejected). In the same project, 28% of volunteers’ did not make it.
Among the 1,453 volunteers with patches rejected, only 414 (28%)

*https://github.com/AlDanial/cloc

https://github.com/fronchetti/CHASE-2018

Who Gets a Patch Accepted First?
Comparing the Contributions of Employees and Volunteers

also have at least one patch accepted. For the employees, the per-
centage is even smaller: 9 employees (15%) who had a patch rejected
also had (at least) one patch accepted. Furthermore, when analyzing
the patches accepted, we observed that few employees concentrate
much of the development process: 7 employees (5%) are responsible
for 58% of the patches accepted; employees have, on average, 39
patches accepted (median=3, q3=2). On the other hand, contribu-
tions from volunteers tend to be much more sporadic: 76% of the
volunteers are casual contributors (i.e., contributors that have only
a single contribution accepted [8, 11]). On average, volunteers have
2.3 patches accepted (median=1, q3=2).

3.2 RQ2: Do volunteers have to wait much
more than employees to have a patch
processed?

In this research question, we studied the difference, in terms of
days, between the date that the pull-request was opened and the
date when it was merged. In this case, we are only considering
accepted pull-requests since they take longer to be processed than
non-accepted ones (e.g., developers that fill the pull-request often
have to complement the pull-request with additional changes [5]).

On average, patches proposed by volunteers take 11.37 days
to be processed (min=0, max=1,144, q3=>5, stdev=>55). In compari-
son, pull-requests from employees take 2.61 days (min=0, max=558,
q3=1, stdev=18). For all studied projects, on average, pull-requests
submitted by employees are processed faster than the ones sub-
mitted by volunteers. In particular, projects hubot and linguist
are the ones that take more time to process pull-requests, either
those submitted by employees (333 and 426 days for hubot and
linguist, respectively) or by volunteers (1,144 and 832 days for
hubot and linguist, respectively).

B Dormants O Nondormants

10 20 30 40

Median values

0

adds dels files commits comments

Figure 1: Median values for dormant and non-dormant pull-
requests

We then analyzed such pull-requests that take too long to be
processed (i.e., the ones that take more than 100 days to be pro-
cessed, the so called “dormant pull-requests”). We found 144 dor-
mant pull-requests (atom: 29, electron: 6, hubot: 22, git-1fs: 5,
linguist: 82). Only 12 out of the 144 dormant pull-requests were
submitted by employees. All of these dormant pull-requests were
accepted; no pull-request rejected took more than 100 days to be
processed. Notwithstanding, the number of additions, deletions,
files changes, commits, and comments per dormant pull-request are
greatly higher than non-dormant pull-requests. Figure 1 compares
the median values of these metric in the two groups. The averages
were skewed by the outliers present in the dormant group.

CHASE’18, May 27, 2018, Gothenburg, Sweden

3.3 RQ3: Do volunteers follow contributing
best practices?

As discussed in Section 2, the listed best practices indicate that a
patch should be small (BP1), the contribution should be accompa-
nied with tests (BP2), and the commit message should be descriptive
(BP3). For BP1, we understand that a small patch should change
at most 2 files and add at most 20 lines. These values were cho-
sen because they represent the median values of these metrics [5].
Figure 3 shows the results for BP1. Considering both closed and
merged pull requests, most of the volunteers submitted patches
that conform to BP1. Interestingly, employees present a lower ad-
herence to BP1. One explanation to this fact is because employees
might work on critical issues, while volunteers might dedicate their
efforts on simpler changes.

merged

O Doest not conform B Conform

closed

‘ O Doest not conform M Conform ‘

od | od ii

Al A2 Bl B2 C1 C2 DI D2 E1 E2 Al A2 B B2 C1 C2 DI D2 E1 E2

0 80 100
60 80 100

40
40

20
20

Figure 2: Percentage of pull-requests submitted by volun-
teers and employees that conform BP1. Each studied project
is represented by a sequence of two bars. The first bar (A1,
B1, etc) represents volunteers data, while the second (A2, B2,
etc) represents employees. A means atom, B means electron,
C means hubot, D means git-1fs, and E means linguist.

To find test files (BP2), we made use of a regular expression
evaluated elsewhere [3], slightly changing it to cover different file
extensions (the original was used only to find Java files). Figure 3(a)
shows that the majority of the accepted pull-requests does not in-
clude test files. This finding goes against recent studies that suggest
that project integrators are more likely to reject pull-requests that
do not come with test cases [6, 14]. The main exception is project
git-1fs, in which 40% of the volunteers and 59% of the employees
provide test cases.

Finally, for this study, a descriptive commit message (BP3) is the
accumulation of three sub-best practices: it should be short (i.e., at
most 50 characters long) [1], the second line should always be blank,
and the message should be written in English [13]. We removed
merge commits due to their automatically generated commit mes-
sages. To identify English-language commits, we used langid. py®
to estimate the probability that all project’s commits are in Eng-
lish. As Figure 3(b) shows, BP3 has low adherence for both groups.
However, the majority of the pull-requests are written in English
(97% submitted by volunteers and 98% submitted by employees).
The pain point here is regarding short commit messages: 74% of

Shttps://github.com/saffsd/langid.py

https://github.com/saffsd/langid.py

CHASE’18, May 27, 2018, Gothenburg, Sweden

(a)-BP2

‘ O Doest not conform B Conform ‘

(b)-BP3

‘ O Doest not conform ® Conform ‘

8 8

Al A2 Bl B2 Cl C2 DI D2 El E2 Al A2 Bl B2 Cl C2 DI D2 El E2

Figure 3: Percentage of accepted pull-requests submitted by
volunteers and employees that conform BP2 (a) and BP3
(b). Each studied project is represented by a sequence of
two bars. The first bar (A1, B1, etc) represents volunteers
data, while the second (A2, B2, etc) represents employees.
A means atom, B means electron, C means hubot, D means
git-1fs, and E means linguist.

the volunteers and 81% of the employees write commit messages
longer than 50 characters.

4 THREATS TO VALIDITY

First, we rely on our approach to verify whether a contributor is
an employee or a volunteer. We made use of a flag available in the
pull-request to make this decision. We acknowledge that this can
be a threat. To minimize this, we manually investigated the affil-
iation of the contributors. We found that two members classified
as volunteer presented GitHub as their organizations. We further
analyzed their profile, and found that they left GitHub and are now
working in other companies. For those classified as employee mem-
bers, all listed themselves as GitHub staff in their profile. Second,
as we analyzed only five projects from the same company, we un-
derstand that the results cannot be generalized. However, a small
sample enabled us to better experiment our approach. Finally, our
strategy to identify test cases might introduce false-positive and
false-negatives. However, we believe that, even in the presence of
false-positive, our main finding (i.e., few pull-requests are accom-
panied with test cases) will not be challenged. We leave a detailed
analysis of these corner cases for future work.

5 RELATED WORK

Zhou etal. [16] studied how industry involvement influence the
onboarding of developers. Homscheid and Schaarschmidt [7] in-
vestigated the drivers that explain organizational and community
turnover intentions of volunteer developers who are paid by third-
party companies. Atiq and Tripathi [2] explored how the developers
perceive the differences of rewards in OSS projects, and found that
OSS projects where only some people get directly paid may fail
if they are mismanaged. Riehle et al. [12] compared “paid” and
“volunteer” work in OSS projects and found that around 50% of the
contributions have been paid work. They considered that any con-
tribution made from Monday to Friday, from 9am to 5pm are paid
contributions. Differently from Riehle and colleagues, we compared

Pinto et al.

the developers that are employees of the company that owns the
project. In a preliminary study [4], we found that both employees

and volunteer developers are rather very active in the analyzed
projects, when it comes to pull-requests submitted

6 CONCLUSIONS

In this paper we investigate how the contributions form employees
and volunteers differ in a number of metrics. When considering the
number of accepted and rejected contributions, volunteers face 26x
more rejections than employees. On the other hand, few employees
are responsible for the majority of the the software development.
Volunteers have to wait, on average, 11 days to have a patch pro-
cessed (employees wait 2 days, on average). 92% of the dormant
pull-requests (e.g., pull-requests that take too long to be processed)
were submitted by employees. Finally, we observed that the best
practices are not systematically followed; the best practice that had
the most adherence is commit messages written in English.

ACKNOWLEDGMENTS

This work is supported by CNPq #406308/2016-0; PROPESP/UFPA
and FAPESP #2015/24527-3.

REFERENCES

[1] A. Alali, H. Kagdi, and J. I. Maletic. What’s a typical commit? a characterization
of open source software repositories. In ICPC’08, pages 182-191, 2008.

[2] A. Atiq and A. Tripathi. Impact of financial benefits on open source software
sustainability. In 374" ICIS, 2016.

[3] N. C. Borle, M. Feghhi, E. Stroulia, R. Greiner, and A. Hindle. Analyzing the
effects of test driven development in github. Empirical Software Engineering,
2017.

[4] L.F. Dias, I Steinmacher, and G. Pinto. Who drives company-owned oss projects:
Employees or volunteers? In V Workshop on Software Visualization, Evolution
and Maintenance, VEM, page 10, 2017.

[5] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based
software development model. In ICSE ’14, pages 345-355, 2014.

[6] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen. Work practices and
challenges in pull-based development: The integrator’s perspective. In ICSE’15,
pages 358-368, 2015.

[7] D. Homscheid and M. Schaarschmidt. Between organization and community:
investigating turnover intention factors of firm-sponsored open source software
developers. In WebSci 16, pages 336-337. ACM, 2016.

[8] A.Lee and]. C. Carver. Are one-time contributors different? a comparison to

core and periphery developers in floss repositories. In ESEM 2017, pages 1-10,

Nov 2017.

G. Pinto and F. Kamei. The census of the brazilian open-source community. In

Open Source Software: Mobile Open Source Technologies, pages 202-211, Berlin,

Heidelberg, 2014. Springer Berlin Heidelberg.

G. Pinto, L. Steinmacher, L. F. Dias, and M. A. Gerosa. On the challenges of

open-sourcing proprietary software projects. Empirical Software Engineering,

2018.

G. Pinto, L. Steinmacher, and M. Gerosa. More common than you think: An

in-depth study of casual contributors. In IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan,

March 14-18, pages 112-123, 2016.

D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt. Paid vs. volunteer work in open

source. In HICSS ’ 14, pages 3286-3295, Jan 2014.

[13] E. A. Santos and A. Hindle. Judging a commit by its cover: Correlating com-

mit message entropy with build status on travis-ci. In Proceedings of the 13th

International Conference on Mining Software Repositories, MSR 16, 2016.

L. Steinmacher, G. Pinto, I. Wiese, and M. Gerosa. Almost there: A study on

quasi-contributors in open-source software projects. In ICSE’18, 2018.

P. Weissgerber, D. Neu, and S. Diehl. Small patches get in! In 2008 International

Working Conference on Mining Software Repositories, MSR *08, pages 67-76, 2008.

[16] M. Zhou, A. Mockus, X. Ma, L. Zhang, and H. Mei. Inflow and retention in oss

communities with commercial involvement: A case study of three hybrid projects.
ACM TOSEM, 25(2):13, 2016.

[9

[10

[11

[12

[14

[15

	Abstract
	1 Introduction
	2 Method
	2.1 Mining Repositories Data
	2.2 Studied Projects

	3 Results
	3.1 RQ1: Do volunteers have to try more than employees to have a patch accepted?
	3.2 RQ2: Do volunteers have to wait much more than employees to have a patch processed?
	3.3 RQ3: Do volunteers follow contributing best practices?

	4 Threats to Validity
	5 Related Work
	6 Conclusions
	References

