
Aspect-Oriented Software Maintenance Metrics:
A Systematic Mapping Study

Juliana Saraiva
Informatics Center, UFPE

jags2@cin.ufpe.br

Emanoel Barreiros
Informatics Center, UFPE

efsb@cin.ufpe.br

Adauto Almeida
Informatics Center, UFPE

ataf@cin.ufpe.br

Flávio Lima
Informatics Center, UFPE

fal2@cin.ufpe.br

Aline Alencar
Informatics Center, UFPE

aaac@cin.ufpe.br

Gustavo Lima
Informatics Center, UFPE

ghlp@cin.ufpe.br

Sergio Soares
Informatics Center, UFPE

scbs@cin.ufpe.br

Fernando Castor
Informatics Center, UFPE

fjclf@cin.ufpe.br

Abstract—Background: Despite the number of empirical stud-
ies that assess Aspect-Oriented Software Development (AOSD)
techniques, more research is required to investigate, for example,
how software maintainability is impacted when these techniques
are employed. One way to minimize the effort and increase the
reliability of results in further research is to systematize empirical
studies in Aspect-Oriented Software Maintainability (AOSM). In
this context, metrics are useful as indicators to quantify software
quality attributes, such as maintenance. Currently, a high number
of metrics have been used throughout the literature to measure
software maintainability. However, there is no comprehensive
catalogue showing which metrics can be used to measure AOSM.
Aim: To identify an AOSM metrics suite to be used by researchers
in AOSM research.
Method: We performed a systematic mapping study based on
Kitchenham and Charters’ guidelines, which derived a research
protocol, and used well known digital libraries engines to search
the literature.
Conclusions: A total of 138 primary studies were selected.
They describe 67 aspect-oriented (AO) maintainability metrics.
Also, out of the 575 object-oriented maintainability metrics
that we analyzed, 469 can be adapted to AO software. This
catalogue provides an objective guide to researchers looking
for maintainability metrics to be used as indicators in their
quantitative and qualitative assessments. We provide information
such as authors, metrics description, and studies that used the
metric. Researchers can use this information to decide which
metrics are more suited for their studies.

I. INTRODUCTION

Although computer science is an area of knowledge related
to exact sciences, Software Engineering (SE) has very peculiar
characteristics that strongly relate it to social sciences. Consid-
ering this fact and the need for reliable results, it is imperative
to encourage the implementation of empirical studies that are
able to assess the effectiveness of techniques, methodologies
and processes proposed in the area. Experimentation, one kind
of empirical study, allows the knowledge to be generated
in a systematic, disciplined, quantifiable and controlled way,
especially in areas where human interaction is a dominant
factor [1]. For this reason, experiments are commonplace in
social and behavioral sciences.

On the other hand, these characteristics make experiments
very difficult to plan and evaluate, since it is not possible to

generate accurate models as in Mathematics or Physics. Even
if an experiment is well-planned, there are still many subjective
variables that are very difficult to isolate, such as human
interactions and behaviors in software development processes.
One way to aid organizations and prove evidence about the
benefits of new technology is to apply it in some situation
that is, at least, close to a real one. However, most companies
are not willing to risk a project using a new technology that
was not throughly assessed or whose benefits were not yet
demonstrated or justified. Empirical studies are essential to
fill this gap, providing reliable data about a given technology,
easing its transfer and adoption. This issue has been widely
discussed by several researchers [1, 2, 3, 4, 5, 6, 7].

Maintainability is considered a software attribute that plays
an important role in its quality level. The less effort/cost the
software maintenance cycle requires, the higher the software’s
quality level. Hence, new software development methods,
techniques, and tools often aim to minimize future costs in the
maintenance process. Aspect-Oriented Software Development
(AOSD) is a widely used software technology in academic sce-
narios [8]. It aims to improve the structure of software systems
by promoting the modularization of concerns whose realiza-
tion is scattered throughout system modules [8]. Its adoption
in software companies could increase if more empirical studies
were conducted, providing accurate information about its
benefits and drawbacks. An approach to reduce the time for
a new technology to make the transition from academia to
everyday software development is to show when its impact is
beneficial or not in software maintainability [9, 4, 10, 11, 12].
Thus, the focus of this work is on Aspect Oriented Software
Maintainability (AOSM).

Various metrics suites have been used as indicators in
quantitative and qualitative software engineering research, as
depicted by the primary studies listed in Appendix A. The lit-
erature provides a large number of metrics to analyze different
software characteristics in object-oriented and aspect-oriented
software development. As a consequence of the number and
diversity of existing metrics, it is difficult for researchers to
choose the most appropriate set of metrics for an empirical
study. In this context, we performed a systematic mapping



to catalogue a list of metrics that can be used in software
maintainability evaluation studies, specifically AOSM. Then,
when researchers start their empirical studies, the time wasted
looking for appropriated metrics to be used in their exper-
iments will decrease. This paper is organized as follows.
Section II describes the protocol used in this mapping study
and in Section III we discuss the results obtained. An overview
of the primary studies is also shown. The threats of validity are
presented in Section IV and Section V presents conclusions
and future work.

II. SYSTEMATIC MAPPING

Mapping Studies [13] try to gather all research related
to a specific topic. Questions are broader and more general
when compared to the ones present on Systematic Literature
Reviews (SLRs) [14], for example: What do we know about
a topic T?. This paper presents a systematic mapping study
performed to identify which metrics are used to measure
Aspect-Oriented (AO) and Object-Oriented (OO) software
development regarding maintainability traits. We followed a
strict protocol defined based on the guidelines proposed by
Kitchenham and Charters [15]. Due to space constraints,
we only show the most important parts of the protocol in
the following sections. The complete protocol is available
elsewhere 1 .

A. Research Questions

This study aims to query the literature and map primary
studies that describe maintainability-specific metrics and their
use to measure object-oriented (OO) and aspect-oriented (AO)
software development. Thus, three research questions were
defined, trying to find a representative metrics suite for our
purpose:

1) RQ1: What metrics were adopted to assess software
maintainability in AOSD?

2) RQ2: What metrics were adopted to assess software
maintainability in OOSD?

3) RQ3: Which metrics that addressed OOSD maintain-
ability can be adapted to address AOSD maintainability?

B. Data Source

The search strategy encompasses well-known digital library
search engines. They were chosen based on the relevance for
the computer science community and availability of papers for
download. The Scopus digital library, for instance, was not
included in this study because sometimes the papers were not
available for downloading. The search process for this study
was based on automated search using the following digital
libraries:

• IEEE Computer Society Digital Library: http://ieeexplore.
ieee.org;

• ACM Digital Library: http://dl.acm.org;
• EI Compendex: http://www.engineeringvillage2.org;
• Science Direct: http://www.sciencedirect.com/science.

1http://bit.ly/SM AOSM

Since the search was performed on different days in dif-
ferent search engines, we decided to limit the final paper
publication date to the 30th of June of 2011. The start date
depended on where the paper came from. Thus, the initial
publication year was 1992 for IEEE, 1993 for ACM and
Science Direct, and 1996 for EI Compendex. Papers published
after this date were not considered so as to produce a more
homogeneous result and also to allow a future precise update
of this study, which will consider publications after this date.
The results of the search process are presented and discussed
in Section III.

C. Primary Studies Search Strategy

This section describes the search strategy to select the
primary studies. The first step was to build a search string.
We used the PICOC (Population, Intervention, Comparison,
Outcome, Context) [14] criteria to frame the search string.
These criteria were derived from guidelines from the medical
domain. Kitchenham and Charters [15] have adapted them
to the context of software engineering. This approach helps
researchers defining relevant terms based on key terms used
by previous studies and expert insights. The resulting search
string from this process was:

“Software Engineering” AND (“Aspect-Oriented Programming”
OR “Maintainability” OR “Aspect-Oriented Software

Development” OR “Crosscutting Concern” OR “Maintenance” OR
“Object-Oriented Programming” OR “Object-Oriented
Development” OR “Evolution”) AND (“Metrics” OR

“Measurement” OR “Measure”)

After formulating the search string, a team of six researchers
was composed to evaluate the search results: (i) 3 PhD students
[Juliana Saraiva, Emanoel Barreiros, and Gustavo Pinto] and,
(ii) 3 MSc students [Adauto Almeida, Aline Alencar, and
Flavio Lima]. In addition, two professors supervised all the
process, Sérgio Soares and Fernando Castor.

The selection of primary studies was conducted in three
phases that are described below:

1) Selection of potentially relevant primary studies;
2) Evaluation of the results from the first selection against

the inclusion/exclusion criteria;
3) Conflicts discussion and final selection.
Initially, only the title, keywords and abstracts were taken

into account for paper inclusion. It is important to stress
that only papers that were clearly out of scope were ex-
cluded in this phase. Then, all potential primary studies were
kept for further analysis. As this activity is fairly simple,
just Juliana Saraiva and Emanoel Barreiros performed it.
The second phase considered the inclusion/exclusion criteria.
Following the guidelines, some criteria should be proposed
to select a more relevant set of papers, trying to keep only
potentially relevant studies after the end of this phase. The
inclusion/exclusion criteria were discussed with all researchers
involved in this mapping. It is important to stress that the in-
clusion/exclusion criteria were validated by experts (Fernando
Castor and Sergio Soares), based on their experience on the



studied topic. Next, the aforementioned exclusion criteria are
listed:

• The paper is not real paper (presentation slides or ex-
tended abstracts);

• The paper is not related to software engineering;
• The paper does not present a maintainability/evolution

metric;
• The paper does not present metric(s) related to OO or

AO programming;
• The paper does not present the metric description.
On the second phase, three pairs of researchers were com-

posed and all the potentially relevant papers were evenly
distributed among them. Each paper was reviewed by at least
two researchers: (i) P01- Juliana and Gustavo, (ii) P02 -
Adauto and Aline, and (iii) P03 - Emanoel and Flavio. The
result of this activity was the selection of the primary studies
and it considered the exclusion criteria previously presented.
Each researcher read the whole paper and made a list of
studies that did not match any exclusion criteria. If a paper
matched at least one of the 5 exclusion criteria, it was excluded
from the mapping. During this part of the process, each pair
built a report of agreements and disagreements regarding the
permanence of each paper in the mapping study according to
the evaluation criteria previously presented.

The third and last phase was the conflict resolution and
final selection. A conflict resolution meeting was organized
and the disagreements discussed under supervision of Sérgio
Soares and Fernando Castor. In this final phase each researcher
screened the full paper. The result of this meeting was the final
set of primary studies. It is important to highlight that at the
end of the process, a paper was selected if it had at least one
maintainability metric, its description, and it should be related
to OO or AO software. All primary studies received a unique
identifier so that they could be easily referenced throughout
the process. For instance, SM01 means: Systematic Mapping
Study Number 01 (first paper selected). For each primary
study, we recorded the following information:

• Reviewers (pair of researchers);
• Date of data extraction;
• Author(s);
• Journal/Conference where it was published;
• Year of publication;
• Metrics and their acronyms;
• Descriptions of the metrics and information on how to

collect them;
• Paradigm (OO or AO).

III. RESULTS DISCUSSION

This section discusses the results found in this systematic
mapping study. It is important to emphasize that the metrics
presented in this section apply to just OOP and AOP.

A. Answers to Research Questions

This section presents the answers to the Research Questions
raised by this systematic mapping.

TABLE I
ASPECT-ORIENTED MAINTAINABILITY METRICS

Metric Description Primary Studies that cited the
metric

LCC Loose Class Cohesion
SM3, SM37, SM68, SM76,
SM181, SM209, SM219,
SM236, SM330, SM331

CDO Concern Diffusion over
Operations

SM144, SM169, SM178, SM209,
SM236, SM126, SM140

CAE Coupling on Advice Ex-
ecution

SM47, SM49, SM53, SM140,
SM161, SM187, SM209

CDLOC Concern Diffusion over
Lines of Code

SM140, SM144, SM169, SM178,
SM209, SM236

CDA Crosscutting Degree of
Aspects

SM49, SM53, SM140, SM161,
SM209, SM236

CIM Coupling on Intercepted
Modules

SM53, SM140, SM161, SM177,
SM209

CFA Coupling on Field Ac-
cess

SM49, SM53, SM161, SM177,
SM187

WOM Weighted Operations in
Module SM47, SM49, SM177, SM187

RFM Response For a Module SM49, SM53, SM161, SM329

CBM Coupling Between Mod-
ules SM47, SM49, SM92, SM177

VS Vocabulary Size SM144, SM209, SM350

UACOH Unified Aspect Cohe-
sion Metric SM330, SM331

LCOO Lack of Cohesion in Op-
erations SM330, SM331

DOS Degree of scattering SM126, SM169
CONC Concentration SM126, SM169

(1) RQ01: What metrics were adopted to assess software
maintainability in AOSD? The goal of this question is to list
metrics that can be used as indicators in the empirical research
that assesses AOSM. Even though this topic is widely studied
by many researchers, no catalogue encompassing most of the
existing AO maintainability metrics was found. Thus, when
researchers start their studies, they waste a certain amount of
time looking for the appropriate metrics to be used or propose
a metric that already exists, as discussed in Section III-B.
Table I summarizes the answer to this question. In addition,
Appendix A depicts each primary study by its identifier. A
total of 67 AO maintainability metrics were found. However,
due to space constraints, we decided to present the most
relevant metrics. The relevance criterion was based on how
many times each metric was cited by the primary studies. In
this paper we only present 15 metrics that appeared at least
twice in the selected papers. It means that each metric was
used by at least one study that is not in the paper where
the metric was presented. Nevertheless, it is important to
notice that the complete catalogue comprising the 67 metrics
is available at our research website 1 .

(2) RQ02: What metrics were adopted to assess software
maintainability in OOSD? Despite the focus of this research
in AOSM, since AOP might be considered an evolution of
OOP, we took into account OO maintainability metrics to
find which of them can be used as indicators in quantitative
assessment of AOSM. From the 575 OO metrics listed, 37
(6.43%) already adhere to OOSD and AOSD, 69 (12%) cannot



be adapted to address AO specific programming structures and,
469 (81.58%) of them can be evolved. Nevertheless, just 19
metrics are depicted in Table II. Once more, due to space
constraints, we were not able not show all the metrics we
found. Based on the same relevance criterion we selected
a number of metrics that we were able to present in the
available number of pages. The metrics depicted here were
referenced by eight or more primary studies. If our criterion
was metrics referenced by seven or more primary studies, the
number of metrics would be 23 and the page limit would not
be respected. The complete set of metrics is available at the
research website 1 .

(3) RQ03: Which metrics that addressed OOSD maintain-
ability can be adapted to address AOSD maintainability?
Actually, we expected that there were more metrics addressing
OOSD than AOSD, since OOP is older and enjoys more
widespread adoption than AOP. Consequently, this research
question was raised trying to identify which of the existing
OO metrics could be used, adapted and/or evolved to help in
the AOSM analysis.

All OO metrics’ descriptions were analyzed to check if it
was possible to evolve them to adhere to AOP. We tried to
identify OOSD language structures that were analogous to the
ones present in AOSD languages, in order to define which OO
metrics could be evolved to measure AOSD. Consequently,
we considered that a class in OO languages is analogous
to an aspect in AO languages. For instance, if there is a
metric that counts the Number of Classes (NC) in an OO
system, its adaptation to AO would count the number of
aspects in an AO system (NAs). Methods in OO languages
were considered analogous to advice in AO languages. For
example, in OOP there is a metric that calculates the number of
Weighted Methods of a Class (WMC) by counting the number
of methods declared in a class. Again, its AO adaptation would
represent the weight of an aspect and would compute the
number of both methods and advice declared in an aspect. It
was observed that most OO metrics could be adapted to AOP.
Among the 575 OO metrics listed, 37 (6.43%) already adhere
to both OOSD and AOSD, since LOC (Lines of Code), 69
(12%) cannot be adapted to address AO specific programming
structures, such as, V (Volume) that is defined as the minimum
possible volume for a given algorithm, and, 474 (82.43%) of
them can be evolved. As example of a metric that can be
evolved is TCC (Tight Cohesion Class) that can be adapted
and turn into TCM (Tight Cohesion Modules), where modules
can be classes and aspects.

Due to space constraints, Table III shows just 14 metrics.
They should be cited by at least 6 primary studies and they
must not have been adapted to address AOSD by previous
work. There are some cases, such as NM (Number of Methods)
that were cited by 8 primary studies, however there is a similar
AO metric evolved from NM: NAd (Number of Advice).
Because of this exclusion criterion to depict the metrics in this
paper, the NM metric does not appear in Table III. The same
cases occurred with RFC (Response For a Class) that was
evolved to RFM (Response For a Module); WMC (Weight

TABLE II
OBJECT-ORIENTED MAINTAINABILITY METRICS

Metric Description Primary Studies that cited the metric

CBO

Coupling
between
Objects
Classes

SM4, SM8, SM13, SM29, SM38, SM42, SM47, SM48,
SM54, SM70, SM73, SM75, SM76, SM87, SM92,
SM111, SM119, SM129, SM132, SM146, SM149,
SM151, SM164, SM166, SM189, SM194, SM200,
SM205, SM209, SM210, SM211, SM217, SM222,
SM266, SM301, SM313, SM319, SM329, SM341,
SM343, SM346, SM347, SM156

NOC
Number of
Children of
a Class

SM4, SM7, SM13, SM31, SM35, SM39, SM42, SM48,
SM49, SM53, SM54, SM66, SM69, SM70, SM75,
SM76, SM79, SM87, SM132, SM156, SM164, SM187,
SM189, SM194, SM200, SM201, SM204, SM205,
SM209, SM210, SM217, SM222, SM224, SM266,
SM290, SM313, SM319, SM325, SM347

LCOM
Lack of
Cohesion in
Methods

SM1, SM3, SM7, SM13, SM35, SM37, SM39, SM48,
SM54, SM69, SM70, SM75, SM76, SM87, SM105,
SM111, SM123, SM128, SM146, SM164, SM165,
SM189, SM194, SM200, SM210, SM217, SM222,
SM226, SM66, SM290, SM307, SM313, SM319,
SM325, SM330, SM331, SM335, SM345, SM347

DIT
Depth of
Inheritance
Tree

SM123, SM4, SM7, SM13, SM31, SM48, SM49,
SM54, SM69, SM70, SM75, SM76, SM87, SM96,
SM132, SM144, SM164, SM177, SM187, SM189,
SM194, SM200, SM201, SM204, SM205, SM209,
SM210, SM217, SM222, SM22, SM266, SM290,
SM313, SM319, SM325, SM347, SM39, SM42, SM66

RFC Response
For a Class

SM4, SM13, SM38, SM39, SM47, SM48, SM54,
SM69, SM70, SM73, SM75, SM76, SM87, SM111,
SM123, SM129, SM132, SM146, SM156, SM164,
SM189, SM194, SM200, SM205, SM209, SM210,
SM217, SM222, SM266, SM313, SM319, SM325, ,
SM329, SM343, SM346, SM347

WMC
Weighted
Methods Per
Class

SM7, SM8, SM31, SM35, SM39, SM48, SM54, SM69,
SM70, SM75, SM87, SM111, SM123, SM132, SM138,
SM146, SM156, SM164, SM189, SM194, SM200,
SM201, SM204, SM210, SM217, SM222, SM266,
SM290, SM313, SM319, SM325, SM337, SM347

LOC Lines of
Code

SM7, SM10, SM23, SM47, SM49, SM74, SM111,
SM138, SM140, SM144, SM146, SM156, SM176,
SM195, SM203, SM208, SM109, SM217, SM219,
SM236, SM269, SM275, SM293, SM323, SM327

MPC
Message
Passing
Coupling

SM13, SM38, SM54, SM66, SM73, SM76, SM132,
SM146, SM151, SM166, SM209, SM301, SM319,
SM341, SM343, SM346, SM234

CC Class
Coupling

SM7, SM23, SM47, SM54, SM69, SM86, SM138,
SM181, SM198, SM199, SM203, SM204, SM208,
SM269, SM288, SM335

DAC
Data
Abstraction
Coupling

SM4, SM13, SM31, SM35, SM54, SM76, SM129,
SM146, SM151, SM209, SM319, SM341, SM343,
SM346

TCC Tight Class
Cohesion

SM3, SM31, SM37, SM68, SM76, SM105, SM111,
SM146, SM176, SM181, SM219, SM277, SM335

LCC Loose Class
Cohesion

SM3, SM37, SM68, SM76, SM181, SM209, SM219,
SM236, SM330, SM331

LCOM3
Lack of
Cohesion in
Methods 3

SM3, SM37, SM68, SM176, SM181, ,SM219, SM267,
SM277

NC Number of
Classes

SM96, SM203, SM82, SM226, SM230, SM288,
SM136

LCOM2
Lack of
Cohesion in
Methods 2

SM3, SM37, SM68, SM176, SM182, SM219, SM224,
SM267, SM277

LCOM1
Lack of
Cohesion in
Methods 1

SM3, SM7, SM68, SM176, SM181, SM219, SM224,
SM264, SM267, SM277

NOM Number of
Methods

SM15, SM35, SM54, SM76, SM111, SM146, SM290,
SM319

NM Number of
Methods

SM70, SM82, SM96, SM136, SM204, SM224, SM230,
SM288

NA Number of
Attributes

SM10, SM96, SM136, SM144, SM203, SM204,
SM205, SM208

CDC

Concern
Diffusion
over
Components

SM126, SM140, SM144, SM169, SM178, SM209,
SM236, SM325



TABLE III
OBJECT-ORIENTED MAINTAINABILITY METRICS THAT CAN BE

EVOLVED/ADAPTED

Metric Description Primary Studied that cited the metric

CBO

Coupling
between
Objects
Classes

SM4, SM8, SM13, SM29, SM38, SM42,
SM47, SM48, SM54, SM70, SM73, SM75,
SM76, SM87, SM92, SM111, SM119, SM129,
SM132, SM146, SM149, SM151, SM164,
SM166, SM189, SM194, SM200, SM205,
SM209, SM210, SM211, SM217, SM222,
SM266, SM301, SM313, SM319, SM329,
SM341, SM343, SM346, SM347, SM156

NOC
Number of
Children of
a Class

SM4, SM7, SM13, SM31, SM35, SM39,
SM42, SM48, SM49, SM53, SM54, SM66,
SM69, SM70, SM75, SM76, SM79, SM87,
SM132, SM156, SM164, SM187, SM189,
SM194, SM200, SM201, SM204, SM205,
SM209, SM210, SM217, SM222, SM224,
SM266, SM290, SM313, SM319, SM325,
SM347

DAC
Data
Abstraction
Coupling

SM4, SM13, SM31, SM35, SM54, SM76,
SM129, SM146, SM151, SM209, SM319,
SM341, SM343, SM346

TCC Tight Class
Cohesion

SM3, SM31, SM37, SM68, SM76, SM105,
SM111, SM146, SM176, SM181, SM219,
SM277, SM335

LCOM1
Lack of
Cohesion in
Methods 1

SM3, SM7, SM68, SM176, SM181, SM219,
SM224, SM264, SM267, SM277

LCOM2
Lack of
Cohesion in
Methods 2

SM3, SM37, SM68, SM176, SM182, SM219,
SM224, SM267, SM277

LCOM3
Lack of
Cohesion in
Methods 3

SM3, SM37, SM68, SM176, SM181, ,SM219,
SM267, SM277

LCOM5
Lack of
Cohesion in
Methods 5

SM3, SM37, SM176, SM181, SM219, SM267,
SM277

LCOM4
Lack of
Cohesion in
Methods 4

SM3, SM37, SM176, SM181, SM2667,
SM277

COF Coupling
Factor

SM11, SM38, SM198, SM211, SM343,
SM346

Methods Per Class) that was adapted and named as WOM
(Weight Operations Per Module); CBO (Coupling Between
Objects) that was turned into CBM (Coupling Between Ob-
jects) and, others that can be saw at our website 1 .

In addition, an in-depth study should be carried out to
investigate which AO-specific syntactic structures could be
assessed to propose new maintainability metrics to adhere
to AOP. As this work is an exploratory study, for all the
metrics that we considered adaptable it is necessary to conduct
an investigation to check and validate the efficiency of the
adaptation of OO metrics to AO. It is possible to observe,
analyzing Tables I and II that some metrics have already been
used in both OOSM and AOSM assessment studies, since thay
are in both tables.

B. Discussion on Identified Metrics

The maintainability metrics identified by this mapping study
are faced as candidates to compose a metrics suite for helping
researchers in empirical studies. With a metrics suite in mind,

researchers can more easily choose the ones that better fit their
intent when designing empirical studies (either quantitative
or qualitative). The number of times each metric was cited
is a relevance measure that can also be used by researchers
when looking into the whole set of 610 metrics. They can
use a subset of these metrics in their empirical evaluations
as indicators of the software quality level regarding software
maintenance. A total of 610 metrics were found, 575 related
to OO and 67 related to AO. It is important to clarify that
32 metrics adhere both to OO and AO. Considering this total,
94.4% are related to OOSM. This result was already expected
since AO is less mature than OO. Also, some researchers
consider that AO is an evolution over OO [8], which may lead
to the conclusion that many of the metrics associated with OO
may also be used in the AO context.

In this paper only 35 metrics were shown, 20 OO metrics
and 15 AO metrics. This occurred because we had to choose
relevance criteria to select which of them would be depicted in
this paper, considering space constraints. The relevance criteria
were (i) for AO metrics, two or more primary studies cited the
metric and, (ii) for OO metrics, eight or more primary studies
cited the metric. For OO metrics, we could show only metrics
that had eight or more citations, if we show metrics that have
seven or more citations, we would not have space to depict
them (23 metrics). The number of citations is higher for OO
metrics because we found a higher number of metrics for this
paradigm. Thus, we had to be more rigorous for this group
of metrics. Nevertheless, all the metrics can be found at the
website 1 previously mentioned.

The first eight metrics depicted in Tables I and II were
mentioned by a large number of papers. However, it is
important to clarify that all those metrics found in this study
were catalogued and considered as an achievement. Thus,
researchers have successfully used this group of metrics in
several empirical evaluations. As a consequence, they can
be considered as part of a metric suite related to software
maintainability analysis. However, it is important to clarify
that all the other metrics were not disregarded by this study,
they all were catalogued. Another point to raise is that most
of these OO metrics can be used in the AOSM investigation
because nearly all syntactic structures found in OOP languages
have analogous structures in AOP languages.

Metrics with different names and the same meanings is
another important issue to point out. For instance, DIT (Depth
of Inheritance Tree) and DIH (Depth of Inheritance) are
metrics that are defined as the maximum length from the
node to the root of the tree. This means that they measure the
number of ancestors of a class/aspect. This is similar to NOA
(Number of Ancestors) and NAC (Number of Ancestors) as
well to TLOC (Total Lines of Code) and LOC (Lines of Code).
On the other hand, there are metrics with the same name and
different meanings, such as NA, which can be Number of
Ancestor or Number of Attributes. These situations occurred
because there is no convention for naming software metrics.

It is important to highlight the topics related to main-
tainability metrics that were addressed by all primary stud-



TABLE IV
TOPICS COVERED BY THE METRICS FOUND

Topic # Citations Total Percentage
of Metrics

Size 150 24.6%
Cohesion 223 36.5%
Coupling 170 27.8%
Inheritance 60 9.84%
Software Architecture Constraint 7 1.26%

ies: Software Architecture Constraints, Inheritance, Cohesion,
Coupling, and Size. Table IV shows the results. The first
column presents the topics related to maintainability described
by the primary studies. The number of maintainability metrics
that claimed to be investigating the topic and relating it to the
topics is shown in the second column. Finally, the third column
shows what is the percentage of the number of metrics in the
second column considering the total of 610 maintainability
metrics found. We discovered these topics by reading and
performing textual search on the descriptions of the metrics
and afterwards discussing the obtained results. Thus, if a
metric description contains information about cohesion, we
considered that this metric is directly related to the cohesion
topic. This occurred for inheritance, coupling, software archi-
tecture constraints, and size. For instance, there is a metric
called AIM (All Inherited Methods) that means the average
of local and overridden/inherited methods in a system. So, the
topic associated with this metrics was Inheritance.

Table IV shows that size, coupling and cohesion are the
most commonly investigated topics addressing software main-
tainability in the literature. More than 89% of the papers
mentioned these topics, providing a clear relationship between
them and maintainability metrics. And finally, Inheritance and
software architecture constraint appears as another important
topics directly related to software maintainability among the
primary studies.

C. Interesting Findings

In addition to the main contribution of the systematic
mapping study presented here (the metrics suite that can
be used to assess AOSM) this section presents some results
obtained during the execution of the study.

At the end of the selection process, 138 primary studies
were selected. However, just 117 papers were presented here.
These papers are the primary studies that appeared in Tables I,
II and III. Appendix A shows the selected primary studies. The
complete list of primary studies involved can be found at our
research website 1 .

1) Digital Libraries: During the systematic mapping
some papers have been excluded according to the previously
described mapping protocol. Table V shows the results of
each phase. The first column presents the digital libraries.
The second column represents the total number of papers
initially returned. The third column depicts the result of
the first selection, which consisted of evaluating the paper’s
title, abstract and keywords. The fourth column exposes the

TABLE V
EVOLUTION OF NUMBER OF PAPERS INCLUDED

Source #Papers 1st.
Selec.

2nd.
Selec.

% In-
cluded Interval

IEEE 2180 225 83 3.8% 1982 - 2011
ACM 2386 119 41 1.7% 1989 - 2011
EI Compendex 173 50 25 14.4% 1969 - 2011
Science Direct 881 26 16 1.8% 1985 - 2011
TOTAL 5620 423 165 2.93% 1969 - 2011
TOTAL* 5175 351 138 2.66% 1969 - 2011

*Number of papers after the removal of all duplicates.

number of papers included after the second phase of analysis,
which consisted of screening the full paper. The fifth column
indicates the percentage of papers included, considering the
initial number of papers returned, and the final selection. The
last column shows the interval of primary studies publication
after the initial query. The last row presents the number of
papers after removing all duplicates. For instance, if a paper
was found on both ACM and IEEE digital libraries, it was ac-
counted and considered just once. The other occurrence would
be marked as a duplicate and removed from the mapping.

Analyzing Table V, it is possible to see that EI Compendex
had the best performance, with 14.4% of papers included.
Despite having the lowest number of papers, EI Compendex
could provide a more accurate list of papers when compared to
the other search engines, adding less noise. The ACM digital
library had the worst performance, demanding more work in
the selection of the papers. Another point we observed is the
low number of selected papers from it.

Table V also shows that, among the 5175 papers returned by
the digital libraries, only 138 were selected. We observed that
the queries presented a considerable level of noise, since only
2.7% of the papers were actually relevant to the mapping.
Many factors can contribute to increase the noise, e.g., we
might have not used the ideal set of keywords. Kitchenham
and Charters have already discussed the problem in using
automated search engines like the ones we employed in
this mapping [15]. One more time, EI Compendex appears
prominently. It contains the oldest paper returned in this study.
It is important to notice that after the paper exclusion process,
the oldest paper selected was from 1992 and the most recent
one was published on June, 2011. This range shows that
maintainability metrics have been studied and proposed for at
least 19 years. Even though software maintainability metrics
have been a research topic through all these 19 years, there is
no catalogue for them.

2) Authors Cited: The authors who wrote the primary
studies are presented in this section. Table VI shows the
number of authors who wrote about software maintainability
metrics. The first column indicates how many times a given
researcher appears as author of a primary study.

As depicted by Table VI, Lionel C. Briand is the researcher
who published more papers on the topic on which this mapping
study is interested. It is important to highlight that most of the
papers found are only using metrics to perform quantitative



TABLE VI
AUTHORS WHO WROTE ABOUT AOSM METRICS

#Papers Authors
1 All the others.

2

Alfred Aho, Andrea De Lucia, Bandar Alshammari,
Baowen Xu, Colin Fidge, Diane Corney, Doo Hwan
Bae, Erik Arisholm, Esperanza Manso, F. Fioravanti,
Fernando Castor, Gail C. Murphy, Hany H. Ammar,
Jianjun Zhao, Jonas Lundberg, Letha Etzkom, Marc
Eaddy, Mikael Lindvall, Nelio Cacho, R. Harrison, San-
tonu Sarkar, Thais Batista, Victor R. Basili, Welf Lowe,
Yuming Zhou.

3

Claudio Sant’Anna, Denys Poshyvanyk, Doo Hwan Bae,
Ewan Tempero, Heung Seok, Chae, Jehad Al Dallal,
John W. Daly, Jurgen K. Wust, P. Nesi, R. Nithi, S.
Counsell.

4 Avadhesh Kumar, Marcela Genero, Mario Piattini, P.S.
Grover, Rajesh Kumar.

5 Alessandro Garcia.
8 Lionel C. Briand.

assessments. This means that the minority of the papers we
selected in this mapping actually propose new metrics.

3) Journal and Conferences: Here we show the journals
and conferences that published the papers about software
maintainability metrics that were selected by the mapping. The
Journals are depicted below, organized by the number of oc-
currences of primary studies. The TSE - IEEE Transactions on
Software Engineering journal is the vehicle that has published
more papers concerning software maintainability metrics. This
means that, after all exclusion processes and analysis of the
remaining papers, this journal provided the highest number of
relevant papers.

• 27 Occurrences: TSE;
• 10 Occurrences: INFSOF;
• 4 Occurrences: JSS;
• 3 Occurrences: Information Sciences;
• 2 Occurrences: Sciences of Computer Programming,

SMR;
• 1 Occurrence: ESE, IJSEKE, TOSEM, JSA, SQJ.
Regarding conferences, METRICS had the highest number

of published papers. This result is expected since this con-
ference is completely related to the subject assessed in this
systematic mapping. Because of space limitations, only the
conferences’ acronyms are presented. Next are the results of
the number of papers published on the proceedings of each
conference:

• 8 Occurrences: METRICS;
• 7 Occurrences: CSMR, ICSM;
• 4 Occurrences: APSEC, ASWEC;
• 3 Occurrences: ACM - SIGSOFT Conference;
• 2 Occurrences: AOSD, ESEM, STEP, WETSoM;
• 1 Occurrence: ACE, ACoM, ACSC, ASE, ASEW, CAS-

CON, CSSE, CW, CYCSYN, ECSA, ESM, FSE, HIS,
ICC, ICCRD, ICECCS, ICETEC, ICIW, ICPC, INFOS,
INMIC, ISESE, ISSTA, MOMPES, PerCom, KAMW,
QSIC, REV, SAC, SBES, SEAA, SEM SEW, SIGPLAN,
SNPD, SOQUA, TASE, TOOLS, WCIT, WoSQ, WSCS,

ACM-SE, ACM-CSUR, ACM-SIGAda.
CSMR and ICSM come close to METRICS in number of

papers published on software maintainability metrics, which
is expected, since these two conferences are directly related
to software maintainability. Another important insight is that
most papers were published in conferences. Among the 138
selected papers, 63 (45.7%) were published in journals and
75 (54.3%) papers were published in conference proceedings.
We believe that this result could be by the larger number of
conferences and workshops, when compared to the number
of Software Engineering journals. Moreover, it is well-known
that the time between the initial submission and the publication
of a paper in a journal is longer. However, an in-depth study
should be conducted.

IV. THREATS TO VALIDITY

The first threat to validity is related to the search strategy
employed. Since we mainly used automated search engines,
relevant studies may not have been included in the set of
selected studies. Even though we dedicated some time to
identify relevant keywords, a particular study that used a
different term, but yet relevant, might be missing.

The second threat observed is that some more recent studies
may be missing because the search engines may not have
indexed them. Other systematic mapping study should be
carried out, with the same research string, trying to find
primary studies that were not contemplated here. The small
number of selected papers, when compared with the number
of returned papers from the digital libraries, is also a threat.
Even though the automated search has been executed without
any time limitation, only 138 papers were considered relevant.
Specifically for this systematic mapping, the existence of
the metric description in the primary study as an inclusion
criterion might have caused the removal of some potentially
relevant papers.

V. CONCLUDING REMARKS

This paper presents a systematic mapping on aspect-oriented
software maintainability metrics. The extraction process used
in this systematic mapping was detailed. Based on that,
other researchers can better evaluate it and eventually try to
reproduce it. It is important to notice that the participation of
eight people in this mapping (three MSc students, three PhD
students and two professors) is an important mechanism to
try to reduce the evaluation bias. This diversity of opinions
caused conflicts and discussions about the ideal metrics suite
to be shown as the final result of this mapping study. We also
show all the information about the digital libraries, authors,
conferences and journals that addressed the subject analyzed
in this study. EI Compendex was the most effective digital
library used in this systematic mapping study. METRICS
Conference is the conference that published more papers
related to software maintainability metrics. In addition, TSE -
IEEE Transactions on Software Engineering Journal published
a higher number of primary studies selected, 27 occurrences.
Interestingly, most of the selected papers just proposed the



metrics. This result was concluded because from the 610
metrics found, just 91 (15%) had two or more citations in
different primary studies. Thus, we inferred that very few
studies actually used the metrics suites previously proposed.

Metrics can be used as indicators in the software assess-
ments, supporting both quantitative and qualitative studies. In
our previous research, we were not able to find any other
work that lists such an extensive number of metrics like
the current mapping. Analyzing the results, it is possible
to notice that the majority of metrics addressing software
maintainability were related to software cohesion, coupling
and inheritance. Also, there were more metrics addressing
object-oriented software maintainability (OOSM) than aspect-
oriented software maintainability (AOSM), as expected. This
occurred because OO has been studied for more time than AO.
OO is also far more adopted in industry when compared to
AO. Consequently, there are more studies and metrics related
to this “paradigm”. In addition, it is possible to mention that
a great number of OO metrics can be adapted or evolved to
address AO.

As future work, as we found a large number of metrics,
we plan check the tools available to collect the OO and AO
metrics automatically, both for object-oriented and aspect-
oriented software development. Case studies using the metrics
suite shown in this work to validate their potential when
adopted in aspect-oriented software quantitative assessments
are another task to be done in the forthcoming steps of our
research. A backward search on the primary studies’ references
can be performed to find other possible metrics that were
not included in this work because of, for example, some
missing relevant keywords on the search string. There were
some cases where the paper was excluded because it presented
only the metric acronym, however its description was in a
referenced paper. In-depth studies can be done to find more
maintenance metrics. The analysis of other concerns that could
have relation with software maintainability is needed. Only
software size, cohesion, coupling, inheritance and software
architecture constraints were identified. Another point that
still requires investigations is the adaptation of OO metrics to
adhere to AO. A deep investigation to check and validate the
efficiency of the adaptation of OO metrics to AO is demanded.
So, an exploratory study to assess the new proposal of AO
metrics suite derived from OO metrics should be done.

ACKNOWLEDGMENTS

Juliana and Emanoel are supported by FACEPE. Sergio is partially
supported by CNPq and FACEPE, grants 305085/2010-7 and APQ-0093-
1.03/08. Fernando is supported by CNPq (306619/2011-3 and 475157/2010-
9), FACEPE (APQ-0395-1.03/10), and by INES (CNPq 573964/2008-4 and
FACEPE APQ-1037-1.03/08). This work was partially supported by the Na-
tional Institute of Science and Technology for Software Engineering (INES),
funded by CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.
We would like to thank the anonymous referees, who helped to improve this
paper with insightful comments and suggestions.

REFERENCES

[1] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[2] W. F. Tichy, Should Computer Scientists Experiment More? Los
Alamitos, CA, USA: IEEE Computer Society, 1997, vol. 31.

[3] V. R. Basili, “The role of experimentation in software engineering: past,
current, and future,” in ICSE’96: Proceedings of the 18th international
conference on Software engineering. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 442–449.

[4] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software
maintainability prediction and metrics,” in ESEM’09: Proceedings of
the 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, 2009.

[5] F. Silva, A. Santos, S. S., C. Franca, C. Monteiro, and F. Maciel,
“Six years of systematic literature reviews in software engineering: An
updated tertiary study,” International Journal Information and Software
Technology, pp. 889–913, 2011.

[6] A. Almeida, E. Barreiros, J. Saraiva, and S. Soares, “Mecanismos para
guiar estudos empiricos em engenharia de software: Um mapeamento
sistematico. (in portuguese),” in ESELAW’11: Proceedings of the 8th
Experimental Software Engineering Latin America Workshop, 2011.

[7] E. Barreiros, A. Almeida, J. Saraiva, and S. Soares, “A systematic map-
ping study on software engineering testbeds,” in ESEM’11: Proceedings
of the 5th International Symposium on Empirical Software Engineering
and Measurement, 2011.

[8] M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and
quantifying crosscutting concerns,” in ACoM’07: Proceedings of the 1st
ACoM Workshop, 2007.

[9] C. SantAnna, A. Garcia, C. Chavez, C. Lucena, and A. Staa, “On
the reuse and maintenance of aspect-oriented software: An assessment
framework,” in SBES’10: Proceedings of the Brazilian Symposium of
Software Engineering, 2003.

[10] J. Saraiva, S. Soares, and F. Castor, “Assessing the impact of aosd on
layered software architectures,” in ECSA’10: Proceedings of the 4th
European Conference on Software Architecture, 2010.

[11] ——, “A metrics suite to evaluate the impact of aosd on layered software
architectures,” in ESCOT’11: Proceedings of the Empirical Evaluation
of Software Composition and Techniques, 2011.

[12] ——, “Analyzing architectural conformance of layered aspect-oriented
systems with arche meter,” in AOSD’11: Proceedings of the 10th Annual
International Conference on Aspect-Oriented Software Development,
2011.

[13] H. Arksey and L. O’Malley, “Scoping studies: towards a methodological
framework,” International Journal of Social Research Methodology,
vol. 8, no. 1, pp. 19–32, 2005.

[14] B. Kitchenham, “Procedures for performing systematic reviews,” Keele
University, Tech. Rep., 2004.

[15] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Software Engineering Group,
School of Computer Science and Mathematics, Keele University, Tech.
Rep., July 2007.

APPENDIX A – THE PRIMARY STUDIES

[SM1] Heung Seok Chae, Yong Rae Know. A cohesion measure for classes in
objectoriented systems. METRICS’98.

[SM3] Letha H. Etzkorna, Sampson E. Gholstonb, Julie L. Fortuneb, Cara E. Steina,
Dawn Utleyb, Phillip A. Farringtonb, Glenn W. Coxa. A comparison of
cohesion metrics for objectoriented systems. INFSOF’04.

[SM4] Aaron B. Binkley, Stephen R. Schach. A comparison of sixteen quality metrics
for objectoriented design. IS’96

[SM7] Hashem Yazbek. A concept of quality assurance for metrics in CASE tools.
SIGSOFT’10.

[SM8] Camelia Serban. A Conceptual Framework for Objectoriented Design Assess-
ment. ESM’10.

[SM10] Vu Nguyen, Barry Boehm, Phongphan Danphitsanuphan. A controlled exper-
iment in assessing and estimating software maintenance tasks. INFSOF’10.

[SM13] Youssef Hassoun, Roger Johnson, Steve Counsell.A dynamic runtime coupling
metric for metalevel architectures. CSMR’04.

[SM15] Jagdish Bansiya, and Carl G. Davis. A hierarchical model for objectoriented
design quality assessment. TSE’02.



[SM23] Tatsuya Miyake, Yoshiki Higo, Katsuro Inoue. A metricbased approach for
reconstructing methods in objectoriented systems. WoSQ’08.

[SM29] Huan Li. A Novel Coupling Metric for ObjectOriented Software Systems.
Transaction on IEEE’08.

[SM31] Thomas Panas, Rudiger Lincke, Jonas Lundberg, Welf Lowe. A Qualitative
Evaluation of a Software Development and ReEngineering Project. SEW’05.

[SM35] Mehwish Riaz, Emilia Mendes, Ewan Tempero. A systematic review of
software maintainability prediction and metrics. ESEM’09.

[SM37] Lionel C. Briand, John W. Daly, and Jurgen K. Wust. A unified framework
for cohesion measurement in Objec Oriented systems. TSE’97.

[SM38] Lionel C. Briand, John W. Daly, and Jurgen K. Wust. A unified framework
for coupling measurement in objectoriented systems. TSE’99.

[SM39] Victor R. Basili, Fellow, IEEE, Lionel C. Briand, and Walcelio L. Melo. A
validation of objectoriented design metrics as quality indicators. TSE’96.

[SM42] Jill Doake, Ishbel Duncan. Amber metrics for the testing and maintenance of
objectoriented designs. CSMR’98.

[SM47] Jennifer Munnelly, Serena Fritsch, Siobhan Clarke. An AspectOriented Ap-
proach to the Modularisation of Context. PerCom’07.

[SM48] Ayaz Farooq, Rene Braungarten, Reiner R. Dumke. An Empirical Analysis
of ObjectOriented Metrics for Java Technologies. INMIC’05.

[SM49] Rachel Burrows, Fabiano Cutigi Ferrari, Alessandro Garcia, Francois Taiani.
An Empirical Evaluation of Coupling Metrics on AspectOriented Programs.
WETSoM’10.

[SM53] Haihao Shen, Sai Zhang, Jianjun Zhao. An Empirical Study of Maintainability
in AspectOriented System Evolution Using Coupling Metrics. TASE’08.

[SM54] W. Lia, L. Etzkorna, C. Davisa, J. Talburt. An empirical study of objectori-
ented system evolution. INFSOF’00.

[SM66] F.G. Wilkiea, B.A. Kitchenham. An investigation of coupling, reuse and
maintenance in a commercial C++ application. INFSOF’01.

[SM68] Jehad Al Dallal, Lionel C. Briand. An objectoriented highlevel designbased
class cohesion metric. INFSOF’10.

[SM69] William W. Pritchett IV. An objectoriented metrics suite for Ada 95.
SIGAda’01.

[SM70] R. Harrison, S. Counsell, R. Nithi. An overview of objectoriented design
metrics. STEP’97.

[SM73] M.K Abdi, H. Lounis, H. Sahraoui. Analyzing Change Impact in ObjectOri-
ented Systems. SEAA’06.

[SM74] Santonu Sarkar, Girish Maskeri Rama, and Avinash C. Kak. APIBased
and InformationTheoretic Metrics for Measuring the Quality of Software
Modularization. TSE’07.

[SM75] Ghassan Allcadi, Doris L. Carver. Application of metrics to objectoriented
designs. TSE’98.

[SM76] Usha Kumari, Sucheta Bhasin. Application of objectoriented metrics To C++
and Java a comparative study. SIGSOFT’11.

[SM79] Juha Gustafsson, Jukka Paakki, Lilli Nenonen, and A. Inkeri Verkamo. Ar-
chitecturecentric software evolution by software metrics and design patterns.
CSMR’05.

[SM82] Juliana Saraiva, Sergio Soares, Fernando Castor. Assessing the impact of
AOSD on layered software architectures. ECSA’10.

[SM84] Bandar Alshammari, Colin Fidge, Diane Corney. Assessing the impact of
refactoring on securitycritical object-oriented designs. APSEC’10.

[SM86] Ebrahim Bagheri, Dragan Gasevic. Assessing the maintainability of software
product line feature models using structural metrics. SQJ’10.

[SM87] Giulio Concas, Michele Marchesi, Alessandro Murgia, Sandro Pinna, Roberto
Tonelli.Assessing traditional and new metrics for objectoriented systems.
WETSoM’10.

[SM92] Mikael Lindvall, Roseanne Tesoriero, Patricia Costa. Avoiding architectural
degeneration an evaluation process for software architecture. METRICS’02.

[SM96] Marcela Genero, Mario Piattini, Esperanza Manso, Giovanni Cantone. Build-
ing UML class diagram maintainability prediction models based on early
metrics. METRICS’03.

[SM105] Sami Makela, Ville Leppanen. Clientbased cohesion metrics for Java pro-
grams. SCP’09.

[SM109] Mikhail Perepletchikov, Caspar Ryan, and Keith Frampton. Cohesion Metrics
for Predicting Maintainability of ServiceOriented Software. QSIC’07.

[SM111] Rudiger Lincke, Jonas Lundberg and Welf Lowe. Comparing software metrics
tools. ISSTA’08.

[SM119] R. Harrison, S. Counsell, R. Nithi. Coupling metrics for objectoriented design.
METRICS’98.

[SM123] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, Francois Lustman and
Guy SaintDenis. Design properties and objectoriented software changeability.

CSMR’00.

[SM126] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail
C. Murphy, Nachiappan Nagappan, Alfred V. Aho. Do Crosscutting Concerns
Cause Defects? TSE’08.

[SM127] T.H. Ng, S.C. Cheung, W.K. Chan and Y.T. Yu. Do Maintainers Utilize
Deployed Design Patterns Effectively? ICSE’07

[SM128] Varun Gupta, Jitender Kumar Chhabra. Dynamic cohesion measures for
objectoriented software. JSA’11.

[SM129] Erik Arisholm, Lionel C. Briand, Audun Fyen. Dynamic coupling measure-
ment for objectoriented software. TSE’04.

[SM132] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson. Dynamic metrics for
object-oriented designs. METRICS’99.

[SM136] Marcela Genero, Mario Piattini and Coral Calero. Empirical validation of
class diagram metrics. ISESE’02.

[SM138] Fabrizio Fioravanti, Paolo Nesi. Estimation and prediction metrics for adaptive
maintenance effort. TSE’01.

[SM140] Guadalupe Ortiz, Behzad Bordbar, Juan Hernandez. Evaluating the use of
AOP and MDA in web service development. ICIW’08.

[SM144] Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranhao,
Alessandro Garcia, Cecilia Mary F. Rubira.Exceptions and aspects the devil
is in the details. FSE’06.

[SM146] Lalji Prasad,Aditi Nagar. Experimental Analysis of Different Metrics (Objec-
tOriented and Structural of Software). CYCSYN’09.

[SM149] V. Krishnapriya, K. Ramar. Exploring the Difference Between Object-Oriented
Class Inheritance and Interfaces Using Coupling Measures. ACE’10.

[SM151] Lionel C. Briand, Jurgen Wu, John W. Daly, D. Victor Porter. Exploring the
relationships between design measures and software quality in objectoriented
systems. JSS’00.

[SM156] Horst Zuse. Foundations of objectoriented software measures. METRICS’96.

[SM161] Avadhesh Kumar, Rajesh Kumar, P.S. Grover. Generalized Coupling Measure
for AspectOriented Systems. SIGSOFT’09.

[SM164] Bruno Stiglic, Marjan Heri6ko, Ivan Rozlnan. How to evaluate objectoriented
software development? SIGPLAN’05.

[SM165] Yuming Zhou, Baowen Xu, Jianjun Zhao, Hongji Yang. ICBMC an improved
cohesion measure for classes. ICSM’02.

[SM166] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto. Identifying Extract Class
refactoring opportunities using structural and semantic cohesion measures.
JSS’10.

[SM169] Marc Eaddy, Alfred Aho, Gail C. Murphy. Identifying, Assigning, and
Quantifying Crosscutting Concerns. ACoM’07.

[SM176] Heung Seok Chae, Yong Rae Kwon, Doo Hwan Bae. Improving cohesion
metrics for classes by considering dependent instance variables. TSE’04.

[SM177] Mario Luca Bernardi, Giuseppe Antonio Di Lucca. Improving Design Pattern
Quality Using Aspect Orientation. STEP’05.

[SM178] Nelio Cacho, Thais Batista, Alessandro Garcia, Claudio SantAnna, Gordon
Blair. Improving Modularity of Reflective Middleware with AspectOriented
Programming. SEM’06.

[SM181] Jehad Al Dallal. Improving the applicability of objectoriented class cohesion
metrics. INFSOF’11.

[SM182] Charles H. House. Information Worker Tools Selection, Adoption and Evalu-
ation Lessons from Software Development history. ICSS’05

[SM187] MATHUPAYAS THONGMAK, PORNSIRI MUENCHAISRI. Maintainability
metrics for aspectoriented software . IJSEKE’09.

[SM189] Shyam R. Chidamber, David P. Darcy, Chris F. Kemerer. Managerial use of
metrics for objectoriented software an exploratory analysis. TSE’98.

[SM193] Lionel C. Briand, Sandro Morasca, Victor R. Basili. Measuring and assessing
maintainability at the end of high level design. TSE’93.

[SM194] AhRim Han, SangUk Jeon, DooHwan Bae, JangEui Hong. Measuring behav-
ioral dependency for improving changeproneness prediction in UMLbased
design models. JSS’10.

[SM195] P.S. Grover, Rajesh Kumar, Avadhesh Kumar. Measuring Changeability for
Generic AspectOriented Systems. SIGSOFT’08.

[SM198] Tobias Mayer, Tracy Hall. Measuring OO systems a critical analysis of the
MOOD metrics. TOOLS’99.

[SM199] Tianlin Zhou, Baowen Xu, Liang Shi, Yuming Zhou, Lin Chen. Measuring
Package Cohesion Based on Context. WSCS’08.

[SM200] G. Manduchi, C. Taliercio. Measuring software evolution at a nuclear fusion
experiment site A test case for the applicability of OO. INFSOF’02.

[SM201] Philippe LiThiaoTt, Jessie Kennedy and John Owens. Mechanisms for inter-
pretation of OO systems design metrics. TSE’98.



[SM203] P. Nesi, M. Campanai. Metric framework for objectoriented realtime systems
specification languages. JSS’96.

[SM204] G. Bucci, F. Fioravanti, P. Nesi, S. Perlini. Metrics and tool for system
assessment. ICECCS’98.

[SM205] N. Debnath, L. Baigorria, D. Riesco,G. Montejano. Metrics applied to Aspect
Oriented Design using UML profiles. Transaction on IEEE’08.

[SM208] F. Fioravanti, P. Nesi, F. Stortoni. Metrics for controlling effort during adaptive
maintenance of object-oriented systems. ICSM’99.

[SM209] Tassia A. V. Freitas, Thais V. Batista, Flavia C. Delicato, Paulo F. Pires.
Metrics for Evaluation of AspectOriented Middleware. SBES’09.

[SM210] Frederick T. Sheldon, Kshamta Jerath, Hong Chung. Metrics for maintain-
ability of class inheritance hierarchies. SMR’02.

[SM211] Santonu Sarkar, Avinash C. Kak, Girish Maskeri Rama. Metrics for Measur-
ing the Quality of Modularization of LargeScale ObjectOriented Software.
TSE’08.

[SM217] Shen Zhang, Yongji Wang, Junchao Xiao. Mining Individual Perfor-
mance Indicators in Collaborative Development Using Software Repositories.
APSEC’08.

[SM219] Yixun Liu, Denys Poshyvanyk, Rudolf Ferenc, Tibor Gyimothy, Nikos Chriso-
choides. Modeling class cohesion as mixtures of latent topics. ICSM’09.

[SM222] Dapeng Liu, Shaochun Xu. New Quality Metrics for ObjectOriented Pro-
grams. SNPD’07.

[SM224] Sahar R. Ragab, Hany H. Ammar. Object-oriented design metrics and tools
a survey. INFOS’10.

[SM226] Brian Keith Miller, Dr. Pei Hsia, Dr. Chenho Kung. Objectoriented architec-
ture measures. TSE’99.

[SM230] David Bellin, Manish Tyagi, Maurice Tyler. Objectoriented metrics an
overview. CASCON’94.

[SM234] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, Matthias Rieger. On The
Detection of Test Smells A MetricsBased Approach for General Fixture and
Eager Test. TSE’07.

[SM236] Eduardo Figueiredo, Claudio Sant’Anna, Alessandro Garcia, Thiago T. Bar-
tolomei, Walter Cazzola, and Alessandro Marchetto. On the Maintainability
of AspectOriented Software A ConcernOriented Measurement Framework.
TSE’08.

[SM264] Michal Hocko and Tomas Kalibera. Reducing performance nondeterminism
via cacheaware page allocation strategies. WOSP’10.

[SM266] Yoshiki Higo, Yoshihiro Matsumoto, Shinji Kusumoto, Katsuro Inoue. Refac-
toring Effect Estimation Based on Complexity Metrics. ASWEC’08.

[SM267] Mohammad Alshayeb. Refactoring Effect on Cohesion Metrics. ICC’09.

[SM269] Chandrashekar Rajaraman, Michael R. Lyu. Reliability and maintainability
related software coupling metrics in C++ programs. TSE’92.

[SM275] Landry Chouambe, Benjamin Klatt, Klaus Krogmann. Reverse Engineering
SoftwareModels of ComponentBased. TSE’08.

[SM277] Gyun Woo, Heung Seok Chae , Jian Feng Cui, JeongHoon Ji. Revising
cohesion measures by considering the impact of write interactions between
class members. INFSOF’08.

[SM288] Raghu V. Hudli, Curtis L. Hoskins, Anand V. Hudli. Software metrics for
objectoriented designs. TSE’94.

[SM290] Marcio F. S.Oliveira, Ricardo Miotto Redin, Luigi Carro, Luis da Cunha
Lamb, Flavio Rech Wagner. Software Quality Metrics and their Impact on
Embedded Software. MOMPES’08.

[SM293] V. Lakshmi Narasimhan, B. Hendradjaya. Some theoretical considerations for
a suite of metrics for the integration of software components. IS’07.

[SM301] Miro Casanova, Ragnhild Van Der Straeten, Viviane Jonckers. Supporting evo-
lution in componentbased development using component libraries. CSMR’07.

[SM307] STEVE COUNSELL, STEPHEN SWIFT. The interpretation and utility of
three cohesion metrics for objectoriented design. TOSEM’06.

[SM313] Robert C. Sharblet, Samuel S. Cohen. The objectoriented brewery a compar-
ison of two objectoriented development methods. SIGSOFT’93.

[SM319] Reiner R. DiiInke,Ines Kuhrau. Toolbased quality management in objectori-
ented software development. TSE’94.

[SM320] Jan Wloka, Robert Hirschfeld, Joachim Hansel. Toolsupported Refactoring of
Aspectoriented Programs. AOSD’08.

[SM323] Shmuel Rotenstreich. Toward measuring potential coupling. TSE’94.

[SM325] Letha Etzkom, Harry Delugach. Towards a semantic metrics suite for objec-
toriented design. TSE’00.

[SM327] Cristina Marinescu, Radu Marinescu, Tudor Grba. Towards a simplified
implementation of objectoriented design metrics. METRICS’05.

[SM329] Thiago T. Bartolomei, Alessandro Garcia, Claudio SantAnna, Eduardo
Figueiredo. Towards a Unified Coupling Framework for Measuring Aspec-

tOriented Programs. SOQUA’06.

[SM330] Avadhesh Kumar, Rajesh Kumar, P.S. Grover. Towards a Unified Framework
for Cohesion Measurement in AspectOriented Systems. ASWEC’08.

[SM331] Avadhesh Kumar, Rajesh Kumar, P.S. Grover. Towards a Unified Framework
for Complexity Measurement in AspectOriented Systems. CSSE’08.

[SM335] Jehad Al Dallal. Transitive based objectoriented lackofcohesion metric.
WCIT’10.

[SM337] Moheb R. Girgis, Tarek. M. Mahmoud, Rehab R. Nour. UML class diagram
metrics tool. TSE’09.

[SM341] Lionel C. Briand, Jurgen Wust, Hakim Lounis. Using coupling measurement
for impact analysis in objectoriented systems. ICSM’99.

[SM343] Malcom Gethers, Denys Poshyvanyk. Using Relational Topic Models to
capture coupling among classes in objectoriented software systems. ICSM’10.

[SM345] Andrea De Lucia, Rocco Oliveto, Luigi Vorraro. Using structural and semantic
metrics to improve class cohesion. TSE’11.

[SM346] Meghan Revelle, Malcom Gethers, Denys Poshyvanyk. Using structural and
textual information to capture feature coupling in objectoriented software.
ESE’11.

[SM347] Mr. U. L. Kulkarni, Mr. Y. R. Kalshetty, Ms. Vrushali G. Arde. Validation of
CK Metrics for Object-Oriented Design Measurement. ICETEC’10.

[SM350] Gunter Mussbacher, Daniel Amyot, Joao Araujo, Ana Moreira, Michael Weiss.
Visualizing AspectOriented Goal Models with AoGRL. REV’07.


