
Is Exceptional Behavior Testing an Exception?
An Empirical Assessment Using Java Automated Tests
Francisco Dalton

Federal University of Alagoas (UFAL)
Maceió, Alagoas, Brazil

fdbd@ic.ufal.br

Márcio Ribeiro
Federal University of Alagoas (UFAL)

Maceió, Alagoas, Brazil
marcio@ic.ufal.br

Gustavo Pinto
Federal University of Pará (UFPA)

Belém, Pará, Brazil
gpinto@upfa.br

Leo Fernandes
Federal Institute of Alagoas (IFAL)

Maceió, Alagoas, Brazil
leonardo.oliveira@ifal.edu.br

Rohit Gheyi
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraíba, Brazil

rohit@dsc.ufcg.edu.br

Baldoino Fonseca
Federal University of Alagoas (UFAL)

Maceió, Alagoas, Brazil
baldoino@ic.ufal.br

ABSTRACT
Software testing is a crucial activity to check the internal quality
of a software. During testing, developers often create tests for the
normal behavior of a particular functionality (e.g., was this file
properly uploaded to the cloud?). However, little is known whether
developers also create tests for the exceptional behavior (e.g., what
happens if the network fails during the file upload?). To minimize
this knowledge gap, in this paper we design and perform a mixed-
method study to understand how 417 open source Java projects are
testing the exceptional behavior using the JUnit and TestNG frame-
works, and the AssertJ library. We found that 254 (60.91%) projects
have at least one test method dedicated to test the exceptional
behavior. We also found that the number of test methods for excep-
tional behavior with respect to the total number of test methods
lies between 0% and 10% in 317 (76.02%) projects. Also, 239 (57.31%)
projects test only up to 10% of the used exceptions in the System
Under Test (SUT). When it comes to mobile apps, we found that,
in general, developers pay less attention to exceptional behavior
tests when compared to desktop/server and multi-platform devel-
opers. In general, we found more test methods covering custom
exceptions (the ones created in the own project) when compared
to standard exceptions available in the Java Development Kit (JDK)
or in third-party libraries. To triangulate the results, we conduct a
survey with 66 developers from the projects we study. In general,
the survey results confirm our findings. In particular, the majority
of the respondents agrees that developers often neglect exceptional
behavior tests. As implications, our numbers might be important
to alert developers that more effort should be placed on creating
tests for the exceptional behavior.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383237

KEYWORDS
Exceptions, Exceptional Behavior, Software Testing.

ACM Reference Format:
Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit
Gheyi, and Baldoino Fonseca. 2020. Is Exceptional Behavior Testing an
Exception? An Empirical Assessment Using Java Automated Tests. In Evalu-
ation and Assessment in Software Engineering (EASE 2020), April 15–17, 2020,
Trondheim, Norway. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3383219.3383237

1 INTRODUCTION
Exception handling techniques are important in modern object-
oriented software development. With exceptions, it is possible to
provide greater reliability in the systems’ execution flow, as they
allow abnormal behavior to be detected, reported, handled, and
corrected, when possible [2, 6, 26]. Hence, there are several stud-
ies that try to assess the quality of exception handling code [4, 6],
development patterns [7, 19, 21, 25], or best practices and usage
scenarios [5, 8, 16, 22]. These studies helped researchers and practi-
tioners to better understand and shape novel exception handling
constructs, techniques, and tools.

In this context, exceptional behavior scenarios should be tested
in order to guarantee that an eventual anomalous behavior will be
detected or handled accordingly. Unfortunately, previous studies
have provided initial evidences—based on a study with 10 projects—
that software developers tend to neglect exception behavior test-
ing [3, 13]. This finding is particularly worrying, since the absence
of tests aimed to validate the launching and handling of excep-
tions can compromise precisely their core feature: the reliability
expected to be obtained from their use [7, 8, 17]. In fact, studies
provide evidences that the majority of crashes in Android Apps are
related to exceptions defined in the Android Framework [11]. Thus,
it is possible that a software system presents failures that could
be otherwise avoided through more rigorous testing that handle
exceptional behavior [3, 14], an activity that we call throughout
this paper as “exceptional behavior testing.”

Some natural questions that one may raise in this context are:
How common is for developers to test the exceptional behavior?
Are these tests more common in desktop/server projects when com-
pared to mobile projects? Do developers prioritize testing custom

https://doi.org/10.1145/3383219.3383237
https://doi.org/10.1145/3383219.3383237
https://doi.org/10.1145/3383219.3383237

EASE 2020, April 15–17, 2020, Trondheim, Norway Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit Gheyi, and Baldoino Fonseca

exceptions (the ones created in the own project) or standard/third-
party exceptions (from the Java development kit and third-party
libraries)? Unfortunately, despite the vast number of studies that
dealt with exception-handling constructs [5, 8, 16, 21, 22, 25], the
literature is not particularly rich when it comes to empirical stud-
ies that shed evidence on whether developers create tests for the
exceptional behavior of their software systems.

To better understand the landscape of exceptional behavior test-
ing in practice, in this paper we present a mixed-method study
considering: (1) an empirical investigation of over 346,573 test meth-
ods from 417 open source Java projects and (2) a survey with 66
developers from these projects. We employed several criteria for
selecting our corpus of projects, such as the use of JUnit,1 TestNG,2
or AssertJ,3 and the use of exceptions. We sorted these projects
by popularity, measured in terms of the number of stars (as of
October 2019). For each project, we selected and downloaded the
latest version available. We categorize these projects using two
dimensions: the platforms (i.e., desktop/server, mobile, or multi-
platform) and the domains (i.e., framework, library, or tool).We then
created a tool that collects metrics related to exception-handling
constructs [9] (i.e., throw statements, throws clauses, and catch
blocks) in the System Under Test (SUT), and exceptions definitions
(custom or standard/third-party). Also, we collect metrics related
to exception-testing constructs (e.g., the expected attribute of the
@Test annotation, fail call right before a catch block) of the JUnit
and TestNG frameworks, and the AssertJ library, amongmany other
metrics.

Our results indicate that the majority of the studied projects—
254 out of 417 (60.91%)—has at least one test method to deal with
the exceptional behavior. However, we found that the number of
test methods for exceptional behavior with respect to the total
number of test methods lies between 0% and 10% in 317 (76.02%)
projects. Also, 239 (57.31%) projects test only up to 10% of the used
exceptions in the SUT. Moreover, we found that mobile developers
tend to create less exceptional behavior test methods than devel-
opers of the other two platforms. When considering the projects’
domains, libraries developers create more exceptional behavior test
methods than developers of the other domains. We also observed
that developers often create more exceptional behavior test meth-
ods that cover custom exceptions in 55.51% of the projects than
standard/third party exceptions. This is particularly the case of
desktop/server (65.38%) and multi-platform (61.74%) projects. Re-
garding the survey, the answers in general are in accordance to
our results. The majority of the respondents (69.70%) believe that
exceptional behavior testing is important. However, 53% agrees
that developers often neglect such tests. Our respondents also no-
ticed that they prioritize the creation of tests that focus on custom
exceptions over standard/third-party ones.

The main contributions of this work is three-fold:

• a quantitative study (based on 417 open source projects) to
understand whether and how developers test the exceptional
behavior of their software systems;

1https://junit.org/junit5/
2https://testng.org/doc/
3https://assertj.github.io/

• a survey with 66 developers (from the projects we studied)
to triangulate with our quantitative results; and

• a tool that is able to, given a Git repository, report a set of
metrics related to testing exceptional behavior.

In this paper, we have the following scope: we focus on Java
automated tests written using JUnit, TestNG, or AssertJ; our tool
collects the metrics statically, i.e., we do not run the programs;
we collect all the exceptions used in the SUT (checked and
unchecked). All projects we use in this study are open source.

2 MOTIVATING SCENARIO
We refer to “exceptional behavior testing” as test methods that
expect exceptions to be raised. We illustrate an example in Listing 1.
The test passes in case IllegalArgumentException is raised.
1 @Test(expected = IllegalArgumentException.class)

2 public void negative_throws(){

3 new TakeIterable<>(Interval.oneTo(5), -1);

4 }

Listing 1: Exceptional behavior test method example.

Many studies on exceptions and error handling have been devel-
oped along the years [3, 13, 27]. In this context, although the goal
of these works is not to analyze whether or how developers test
the exceptional behavior, they suggest that testing the exceptional
behavior is not quite common. For instance, Goffi et al. [13] claimed
that developers “do not pay equal attention to testing exceptional be-
havior.” Similarly, Bernardo et al. [3] claimed that “manually-written
test suites tend to neglect exceptional behavior.”

Listing 1 was extracted from the eclipse-collections project.4
To evaluate the exceptional behavior, this particular test method
relies on the expected attribute of the @Test annotation (Line 2)
provided by JUnit. This project has 1,726 out of 10,362 test methods
(16.66%) that evaluate the exceptional behavior. However, there
are projects that place less effort in evaluating the exceptional
behavior. For example, despite the similar number of test methods,
the ghidra framework5 (a software reverse engineering framework
created and maintained by the National Security Agency) has 348
out of 10,976 test methods (3.17%) aimed to evaluate the exceptional
behavior. Given this scenario, although existing works [3, 13] claim
that developers neglect exceptional behavior testing, they did not
provide an in-depth investigation on whether and how developers
test the exceptional behavior. In this work, we consider a much
higher number of projects (417 versus 10 [13]). We also identify
differences among platforms and domains, correlate the results
with repositories’ characteristics, and triangulate our results with
a survey with 66 participants.

3 EMPIRICAL STUDY
In this section we present our empirical study. First, we introduce
the research questions (Section 3.1). Then we present the studied
projects and the criteria used to select them (Section 3.2). After-
wards, we detail the metrics we use to answer our research ques-
tions (Section 3.3). Also, we describe our tool used to collect and

4https://github.com/eclipse/eclipse-collections
5https://github.com/NationalSecurityAgency/ghidra

https://junit.org/junit5/
https://testng.org/doc/
https://assertj.github.io/
https://github.com/eclipse/eclipse-collections
https://github.com/NationalSecurityAgency/ghidra

Is Exceptional Behavior Testing an Exception?
An Empirical Assessment Using Java Automated Tests EASE 2020, April 15–17, 2020, Trondheim, Norway

analyze data (Section 3.4). Finally, we explain the procedures we
use to perform our survey (Section 3.5).

3.1 Goal and Research Questions
The goal of our study consists of statically analyzing open source
projects for the purpose of assessing whether and how developers
create exceptional behavior test methods from the point of view of
software developers in the context of open source projects.

We intend to answer the following research questions:
• RQ1: Do developers create test methods for the exceptional
behavior?

• RQ2: Do the test methods cover more distinct custom ex-
ceptions or distinct standard/third-party exceptions?

• RQ3: How do developers perceive the exceptional behavior
testing?

Answering RQ1 is important to understand if developers inten-
tionally create exceptional behavior tests for the exceptions found
in the SUT, and if it is possible to notice different results when
comparing distinct software platforms and domains. Answering
RQ2 is important to verify if developers pay equal attention to
the exceptional behavior regardless of the source of the exception
(i.e., custom or standard/third-party). Answering RQ3 is important
to comprehend how developers perceive the exceptional behavior
testing and to raise developers thoughts and opinions. This might
help researchers and practitioners with developing processes and
tools to focus on exceptional behavior tests.

3.2 Studied Projects
To select the projects for our study, we used the GitHub API to
query and find repositories. We focused on frameworks, libraries,
and tools written in Java. Then, we sorted the resulting list of
projects by the number of stars. As an example, to find libraries
we executed the following query: language: java sort: stars
library. As a stop criteria, we arbitrarily limited our script to fetch
600 repositories. However, some of these projects do not exhibit
the characteristics we are interested. We then excluded repositories
that do not meet the following criteria:

(1) Has at least one custom, standard, or third-party exception
being used in exception-handling constructs (i.e., throws
clauses, throw statements, or on catch blocks) in the SUT;

(2) Has at least one test method using JUnit, TestNG, or AssertJ.
Criterion (1) indicates that the project under evaluation makes

use of exceptions and, therefore, developers may have a reason to
implement tests for exceptional behavior. Criterion (2) was designed
to eliminate projects that do not do any automated testing using
JUnit, TestNG, or AssertJ. Criterion (1) excluded 162 projects while
Criterion (2) excluded 21 more projects. Thus, the empirical study
we report in this paper considers 417 projects.

In the next step, we classified each project considering the plat-
form. In particular, we focused on desktop/server (exclusively), mo-
bile (exclusively), and multi-platform. To perform this classification,
we rely on the javalibs.com website. Given a project, this website
returns—based on maven dependencies—whether the project is
used by mobile and non-mobile projects. For example, when consid-
ering the RxJava project, the website reports that 96% of the projects

that use RxJava are non-Android projects and 4% of the projects
that use RxJava are Android projects. Therefore, we classify RxJava
as multi-platform. Afterwards, two researchers manually analyzed
each project to confirm the website classification. For the projects
that are not available in the website, we rely exclusively on our
manual classification.

Some of the projects we use in our empirical study include
dropwizard, antlr4, eclipse-collections, docx4j, netty (classified as
desktop/server); bento, hover, picasso, zxing-android-embedded,
joda-time-android, tinker (classified as mobile); and selenium, ja-
coco, guava, junit4, google-cloud-java, google-maps-services-java,
mockito, soot, spring-boot, spring-framework (classified as multi-
platform). In summary, our dataset has 202 (48.44%) desktop/server
projects (78 frameworks, 34 libraries, and 90 tools); 152 (36.45%)
mobile projects (50 frameworks, 60 libraries, and 42 tools); and 63
(15.11%) multi-platform projects (22 frameworks, 35 libraries, and
six tools). Figure 1 illustrates distributions regarding the reposito-
ries ages, repository activity, LOC, stars, and contributors of the
projects.

3.3 Collected Metrics
(1) Number of Distinct Used Exceptions (NDUE): Number of dis-

tinct exceptions found in throw instructions, throws clauses,
and catch blocks in the SUT;

(2) Number of Distinct Used Custom Exceptions (NDUCE): Num-
ber of distinct custom exceptions found in throw instruc-
tions, throws clauses, and catch blocks in the SUT;

(3) Number of Distinct Used Standard/Third-party Exceptions
(NDUSTE): Number of distinct standard/third-party excep-
tions found in throw instructions, throws clauses, and catch
blocks in the SUT;

(4) Number of Test Methods (NTM): Total number of test meth-
ods;

(5) Number of Exceptional Behavior Test Methods (NEBTM): To-
tal number of test methodswith exception-testing constructs;

(6) Number of Distinct Tested Exceptions (NDTE): Total number
of distinct exceptions used in at least one test method and
in the SUT;

(7) Number of Distinct Tested Custom Exceptions (NDTCE): Total
number of distinct custom exceptions used in at least one
test method and in the SUT;

(8) Number of Distinct Tested Standard/Third-party Exceptions
(NDTSTE): Total number of distinct standard/third-party
exceptions used in at least one test method and in the SUT.

3.4 Tool Description and Usage Scenarios
We developed a tool [10] that analyzes Git repositories. For each
repository, the tool performs a syntactic analysis on Java code. This
tool was based on JavaParser,6 a lightweight library for supporting
syntactic analysis in Java code, version 3.13.2.

Our tool identifies exception-handling constructs [9] (i.e., throw,
throws, and catch) in the SUT. It also identifies exception-testing
constructs from JUnit (i.e., assertThrows call, the expected at-
tribute of the @Test annotation, and the ExpectedException rule),
from TestNG (i.e., the expectedExceptions attribute of the @Test
6https://javaparser.org

javalibs.com
https://javaparser.org

EASE 2020, April 15–17, 2020, Trondheim, Norway Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit Gheyi, and Baldoino Fonseca

Desktop/ServerMobile Multi-platform

20

40

60

80

100

120

140
Ag

e
(m

on
th

s)

(a) Ages.
Desktop/ServerMobile Multi-platform

0

100

200

300

Ac
tiv

ity
 (J

ul
 to

 S
ep

)
(b) Commits per month.

Desktop/Server Mobile Multi-platform

3

4

5

6

lo
g1

0(
LO

C)

(c) LOC.
Desktop/ServerMobile Multi-platform

0

10 k

20 k

30 k

40 k

St
ar

s

(d) Stars.
Desktop/ServerMobile Multi-platform

0

100

200

300

400

C
on

tri
bu

to
rs

(e) Contributors.

Figure 1: Dataset distributions. The white dot represents the median.

1 public <T> T convertIfNecessary(...) throws

TypeMismatchException {

2 try {

3 return this.typeConverterDelegate...;

4 } catch (ConverterNotFoundException | IllegalStateException

ex) {

5 throw new ConversionNotSupportedException(value,

requiredType, ex);

6 } catch (ConversionException | IllegalArgumentException ex) {

7 throw new TypeMismatchException(value, requiredType, ex);

8 }

9 }

Listing 2: Examples of exception-handling constructs.

annotation), and fromAssertJ library calls (i.e., assertThatThrown-
By, asserThatExceptionOfType, assertThatIOException). Also,
our tool identifies a fail call right before a catch block, which
is common in tests written in JUnit, TestNG, and AssertJ. During
the identification of the constructs, our tool collects the exceptions’
names being used in the source code and in the test methods.

To better explain how our tool works, consider the code snip-
pet from the Spring-Framework7 project shown in Listing 2. If
this code was analyzed by our tool, the exception TypeMismatch-
Exception described in the throws clause (Line 2) would be col-
lected. Moreover, the exceptions ConvertedNotFoundException
(Line 6), IllegalStateException (Line 6), ConversionException
(Line 9), and IllegalArgumentException (Line 9) would also be
collected, because they are used inside catch blocks. Finally, the ex-
ceptions ConversionNotSupportedException (Line 7) and Type-
MismatchException (Line 10) would also be collected because they
are used within a throw instruction.

Listing 3 shows a test method to test exceptional behavior. In
this case, our tool would collect the exception in the first parameter
of the assertThrows method (Line 4), which in this case is the
IllegalStateException exception.

1 @Test

2 void invalidExpressionEvaluationType() {

3 IllegalStateException exception =

assertThrows(IllegalStateException.class, ...);

4 }

Listing 3: assertThrowsmethod call example.

Similarly, we can collect the exceptions used in the expected
attribute of the @Test annotations (see Listing 1, Line 2). Our tool
can also collect the exceptions used with the ExpectedException

7https://github.com/spring-projects/spring-framework

Table 1: Three metrics results from our code snippets.

Metric Custom Standard or Third-Party

NDUE 4 2
NDTE 1 2

NEBTM 1 2

rule. Listing 4 illustrates an example. In this case, the tool would
collect the IllegalArgumentException exception (Line 6).

1 @Rule

2 public ExpectedException expectedException =

ExpectedException.none();

3 @Test

4 public void addPropertiesFilesToEnvironmentWithNullContext() {

5 expectedException.expect(IllegalArgumentException.class);

6 }

Listing 4: ExpectedException rule example.

Our tool also collects the exceptions being used in the catch
blocks right after a call to the fail method (Listing 5). To test
the exceptional behavior, the developer expects the TypeMismatch-
Exception (Line 6) to be thrown and thus the test execution would
not reach the fail method call. In case the execution reaches the
fail method call, the test fails.

1 @Test

2 public void setEnumProperty() {

3 try {

4 fail("Should have thrown TypeMismatchException");

5 } catch (TypeMismatchException ex) {

6 (...)

7 }

8 }

Listing 5: failmethod call example.

The tool also labels each exception as custom (an exception
created in the own project), standard (readily available in the Java
development kit), or third-party (available in third-party libraries
exceptions).

Table 1 shows the exceptions found in Listings 2–5. The Illegal-
ArgumentException, and IllegalStateException exceptions are
labelled as standard/third-party. The remaining ones are labelled
as custom exceptions. In this case, we can see that our tool would
have found six distinct exceptions being used in the SUT and would
have found tests only for three exceptions. This tell us that 50% of
the distinct used exceptions have been tested.

https://github.com/spring-projects/spring-framework

Is Exceptional Behavior Testing an Exception?
An Empirical Assessment Using Java Automated Tests EASE 2020, April 15–17, 2020, Trondheim, Norway

3.5 Survey Data
Our survey intends to cross-validate the findings observed in the
mining study. The survey has two main sections. The first focuses
on developers background and general information (i.e., Java ex-
perience, platforms, and domains in which they work with, and
demographics information). The second section asks participants (i)
to rate the importance of exceptional behavior testing, (ii) whether
they prioritize custom or standard/third-party exceptions when
writing tests, and (iii) to evaluate the following sentence: “Software
developers neglect tests that focus on exceptional behavior.”

The participants of our survey are developers of the projects we
studied. We developed a script that selects the contributors that
made commits with the “test” keyword in the commit message. We
sent e-mails to 2,259 developers inviting them to participate in the
survey. We sent the actual questionnaire on October 8th, 2019. Dur-
ing the period of 14 days we received 66 responses (a 2.92% response
ratio). The respondents are from North America (22.73%), South
America (3.03%), Europe (60.61%), Asia (6.06%), Eurasia (4.55%),
Oceania (1.52%), and undefined (1.52%). The majority of the partici-
pants (60.60%) has more than 10 years of experience in Java. The
respondents are knowledgeable (63.60%) and very knowledgeable
(33.40%) with Java Testing frameworks.

4 RESULTS AND DISCUSSION
In this section we answer our research questions and discuss the
results we obtained. All data, scripts and the tool created in this
study are also online available in our companion website [10].

RQ1: Do developers create test methods for the
exceptional behavior?
We found that 254 out of 417 (60.91%) projects have at least one
test method for exceptional behavior (NEBTM > 0). When consid-
ering the platforms, we notice that 149 out of 202 (73.76%) projects
of the desktop/server platform and 52 out of 63 (82.54%) multi-
platform projects have NEBTM above zero. The result is much
lower when considering the mobile platform: only 53 out of 152
(34.87%) projects have at least one test method for exceptional be-
havior. Regarding the domain, libraries have the highest numbers in
all platforms: 85.29% (desktop/server), 41.67% (mobile), and 82.86%
(multi-platform) of the libraries have at least one test method for
exceptional behavior.

However, the numbers we illustrated so far do not have a ratio
related to the total number of test methods of each project. To do
so, for each project, we divided the number of exceptional behavior
test methods by the total number of test methods (NEBTM/NTM
in Table 2). As illustrated in Figure 2 (at the right-hand side, com-
bining all domains), the great majority of the projects—317 out of
417 (76.02%)—dedicate up to 10% of the test methods to exceptional
behavior. More specifically, the number of test methods for excep-
tional behavior with respect to the total number of test methods
lies between 0% and 10% in 76.24% of the desktop/server projects; in
84.87% of the mobile projects; and in 53.97% of the multi-platform
projects. The medians for NEBTM/NTM in Table 2 are: 4.02% for
desktop/server; 0% for mobile; and 9.38% for multi-platform.

We also found strong Spearman [1] correlations in all platforms
regarding NEBTM and non-Exceptional Behavior Test Methods

Table 2: Collected metrics to answer RQ1. NEBTM = Number
of Exceptional Behavior Test Methods; NTM = Number of Test
Methods; NDUE = Number of Distinct Used Exceptions; NDTE
= Number of Distinct Tested Exceptions.

NEBTM NTM NEBTM/
NTM NDUE NDTE NDTE/

NDUE

D
es
kt
op

/S
er
ve
r

Fr
am

ew
or
ks 119.15 1,122.59 7.27% 50.92 10.64 18.44% mean

330.35 2,624.11 12.33% 46.68 16 19.49% std
0 1 0% 3 0 0% min

9.50 256 4% 37 4 12.13% 50%
2,111 16,699 100% 252 77 73.91% max

Li
br
ar
ie
s 107.47 1,119.50 10.31% 56.21 13.38 26.45% mean

264.75 3,309.40 10.63% 78.92 20.20 24.44% std
0 15 0% 1 0 0% min
21 362 8.42% 34.50 7 20.94% 50%

1,519 19,556 40% 460 104 100% max

To
ol
s

60.69 617.33 7.80% 38.79 5.42 11.46% mean
241.42 1,814.61 14.12% 38.89 13.69 14.48% std

0 1 0% 3 0 0% min
4 97 3.06% 27.50 2 5.38% 50%

2,164 15,707 84.73% 257 118 66.67% max

A
ll

91.14 896.96 8.02% 46.41 8.78 16.68% mean
282.64 2,440.73 12.89% 50.77 16.06 19.13% std

0 1 0% 1 0 0% min
7 194.50 4.02% 34 3 10.20% 50%

2,164 19,556 100% 460 118 100% max
M
ob
ile

Fr
am

ew
or
ks 39.70 655.10 2.89% 31.56 4.90 12.48% mean

134.05 2,345.87 4.80% 55.89 12.30 23.71% std
0 1 0% 1 0 0% min
0 16.50 0% 12 0 0% 50%

806 15,077 16.86% 337 65 100% max

Li
br
ar
ie
s 11.22 134.98 4.29% 14.18 2.02 12.68% mean

28.24 330.57 7.02% 19.31 4.09 20.12% std
0 1 0% 1 0 0% min
0 22.50 0% 9 0 0% 50%

144 1,922 26.26% 130 17 100% max

To
ol
s

1.69 24.26 4.30% 16.50 0.43 2.87% mean
5.09 50.13 11.12% 14.86 1.11 8.12% std

0 1 0% 1 0 0% min
0 4.50 0% 12 0 0% 50%
28 276 48.15% 60 6 40% max

A
ll

17.95 275.48 3.84% 20.54 2.53 9.90% mean
79.99 1,379.23 7.79% 35.78 7.69 19.43% std

0 1 0% 1 0 0% min
0 10 0% 10 0 0% 50%

806 15,077 48.15% 337 65 100% max

M
ul
ti-
pl
at
fo
rm

Fr
am

ew
or
ks 362.50 2,387.05 13.21% 68.18 28.41 37.41% mean

598.07 3,933.30 11.11% 78.92 44.06 37.64% std
0 2 0% 4 0 0% min

79.50 1,163 11.04% 46 12 34.20% 50%
2,329 16,924 34.38% 374 194 160.53% max

Li
br
ar
ie
s 259.03 1,936.46 11.32% 33.43 12.03 32.58% mean

661.27 4,430.93 11.32% 28.30 14.96 32.82% std
0 6 0% 2 0 0% min
35 391 9.65% 26 8 21.43% 50%

3,462 22,539 41% 122 70 125% max

To
ol
s

20.17 537.33 3.67% 39 3.83 10.82% mean
41.16 614.41 3.75% 37.68 6.05 12.81% std

0 39 0% 11 0 0% min
4 235 2.86% 27.50 1.50 5.56% 50%

104 1,333 7.97% 108 16 33.33% max

A
ll

272.41 1,960.56 11.25% 46.10 16.97 32.19% mean
608.46 4,037.08 10.96% 54.14 29.33 33.73% std

0 2 0% 2 0 0% min
40 409 9.38% 36 7 20% 50%

3,462 22,539 41% 374 194 160.53% max

(NTM-NEBTM), i.e., 0.84 (p-value 2.61−55) for desktop/server, 0.76
(p-value 6.88−30) for mobile, and 0.84 (p-value 1.72−18) for multi-
platform. This way, the lack of exceptional behavior test methods
might be related to the absence of test methods in general.

EASE 2020, April 15–17, 2020, Trondheim, Norway Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit Gheyi, and Baldoino Fonseca

Frameworks Libraries Tools

0%

20%

40%

60%

80%

100%

Desktop/Server Mobile Multi-platform

All

Figure 2: Ratio of NEBTM/NTM.

Furthermore, for each project we also calculate the ratio of the
Number of Distinct Tested Exceptions (NDTUE) to the Number
of Distinct Used Exceptions (NDUE) (see column NDTE/NDUE in
Table 2). Our intention is to understand whether each of the excep-
tions used in throw instructions, throws clauses, and catch blocks
has at least one corresponding test method. Figure 3 illustrates
the distribution of these ratios for all projects. We notice that 239
out of 417 (57.31%) projects test only up to 10% of the used ex-
ceptions. When considering the platform, 52.97% (desktop/server),
73.03% (mobile), and 33.33% (multi-platform) of the projects test up
to 10% of the used exceptions. In terms of domain, 55.33% (frame-
works), 42.64% (libraries), and 73.19% (tools) of the projects test
up to 10% of the used exceptions. We found medium Spearman
correlations in all platforms regarding NDTUE/NDUE and the num-
ber of contributors of the projects, i.e., 0.37 (p-value 4.79−8) for
desktop/server, 0.42 (p-value 4.23−8) for mobile, and 0.51 (p-value
1.83−5) for multi-platform. This way, as the number of contributors
grows, there might be a better chance of also growing the number
of test methods for exceptions used in the SUT.

Frameworks Libraries Tools

0%

20%

40%

60%

80%

100%

Desktop/Server Mobile Multi-platform

All

Figure 3: Ratio of NDTE/NDUE.

We observed that libraries developers tend to write more ex-
ceptional behavior test methods to a higher number of distinct
exceptions than developers of the other two domains. In contrast,
developers of the mobile platform tend to write less exceptional be-
havior test methods when compared to developers of the other two
platforms. Previouswork has reported a large studywith 2,486 open-
source Android apps and found that the majority of the crashes in
these apps is related to exceptions defined in the Android frame-
work [11]. Since the great majority of the mobile projects studied
are from the Android platform, an interesting hypothesis is to test
whether the lack of exceptional behavior tests is leading to the re-
ported crashes. We can also check if the maturity of the majority of
the multi-platform projects (e.g., Spring-framework, jacoco, junit4,
mockito, RxJava, and selenium) is leading to better numbers than
the desktop/server and mobile platforms. However, testing these
hypotheses is out of the scope of this paper.

We also observed several projects (127 out of 417, i.e., 30.45%) cre-
ating test methods for exceptions not used in the SUT. This means
that there is, for example, a test method with @Test(expected =
E.class) and E is not used in the SUT. For example, the mockito
project has test methods for 53 exceptions, but only 36 of them are
used in the SUT.

RQ2: Do the test methods cover more distinct
custom exceptions or distinct
standard/third-party exceptions?
Table 3 presents the summary of the Number of Distinct Used
Custom Exceptions (NDUCE) and the Number of Distinct Used
Standard/Third-party Exceptions (NDUSTE) of all projects. Column
NDUE represents the Number of Distinct Used Exceptions and is
calculated by the sum of NDUCE and NDUSTE. Notice that the sum
of both median ratios (NDUCE/NDUE + NDUSTE/NDUE) is 100%
(see the median values of NDUCE/NDUE and NDUSTE/NDUE in
Table 3, e.g., 10% and 90% in multi-platform libraries, respectively).
According to the results, developers tend to use more commonly
standard/third-party exceptions than to create and use new ones in
their projects. Figure 4 presents the distributions of NDUCE/NDUE
and NDUSTE/NDUE. Notice that NDUSTE/NDUE has higher ratios.
Also, notice that the NDUCE/NDUE ratio is generally below 40%.
The highest median ratio is achieved by the multi-platform frame-
works (23.53%). The opposite (NDUCE/NDUE > NDUSTE/NDUE)
happens in only seven projects: ghidra, XChange, j2objc, cosbench,
spring-framework, airline, and platform_frameworks_base. In ad-
dition, the multi-platform tools are the only ones to use custom
exceptions in all projects, but the sampling of this group is very
small (i.e., six projects), as presented in the row “projects” in Table 3.

NDUCE/NDUE NDUSTE/NDUE

0%
20%
40%
60%
80%

100%
Desktop/Server Mobile Multi-platform

Figure 4: Ratios of NDUCE/NDUE and NDUSTE/NDUE.

Table 3 also presents the Number of Distinct Tested Custom Ex-
ceptions (NDTCE) and theNumber of Distinct Tested Standard/Third-
party Exceptions (NDTSTE). To analyze the distribution of these
metrics related to the Number of Distinct Tested Exceptions (NDTE),
for all projects we also compute NDTCE/NDTE and NDTSTE/NDTE
(again, the sum of both ratios is 100%). However, we have projects
where no exceptions have associated tests. Thus, we removed these
projects to avoid divisions by zero. Therefore, the row “projects” in
Table 3 has different numbers (e.g., in the first row (desktop/server
frameworks), the number of projects dropped from 78 to 56 projects).
Figure 5 shows the distribution of the NDTCE/NDTE and NDT-
STE/NDTE ratios. Notice that in the majority of the projects there
are more distinct standard/third-party exceptions with test methods
when compared to distinct custom exceptions.

Our results suggest that standard/third party exceptions are
more used throughout the SUT (i.e., ratios NDUCE/NDUE and

Is Exceptional Behavior Testing an Exception?
An Empirical Assessment Using Java Automated Tests EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 3: Collected metrics to answer RQ2. NDUCE = Number of Distinct Used Custom Exceptions; NDUSTE = Number of Distinct
Used Standard/Third-party Exceptions; NDUE =Number of Distinct Used Exceptions; NDTCE =Number of Distinct Tested Custom
Exceptions; NDTSTE =Number of Distinct Tested Standard/Third-party Exceptions; NDTE =Number of Distinct Tested Exceptions.

NDUCE NDUSTE NDUE NDUCE/
NDUE

NDUSTE/
NDUE NDTCE NDTSTE NDTE NDTCE/

NDTE
NDTSTE/

NDTE
NDTCE/
NDUCE

NDTSTE/
NDUSTE

D
es
kt
op

/S
er
ve
r

Fr
am

ew
or
ks

78 78 78 78 78 78 78 78 56 56 68 68 count
15.36 35.56 50.92 22.12% 77.88% 4.03 4.88 8.91 35.44% 64.56% 26.18% 12.09% mean
22.94 25.67 46.68 16.25% 16.25% 7.53 7.03 13.94 27.98% 27.98% 27.69% 13.17% std

0 2 3 0% 33.33% 0 0 0 0% 0% 0% 0% min
5 29 37 18.98% 81.02% 1 2 3 38.60% 61.40% 20.84% 7.90% 50%

138 133 252 66.67% 100% 34 34 65 100% 100% 100% 53.12% max

Li
br
ar
ie
s

34 34 34 34 34 34 34 34 29 29 31 31 count
14.65 41.56 56.21 17.91% 82.09% 4.18 6.35 10.53 26.88% 73.12% 34.16% 17.31% mean
27.58 52.94 78.92 13.08% 13.08% 9.68 7.16 15.79 22.24% 22.24% 31.58% 15.32% std

0 1 1 0% 42.48% 0 0 0 0% 22.22% 0% 0% min
4.50 30.50 34.50 17.03% 82.97% 1 4.50 5.50 27.27% 72.73% 33.33% 15.38% 50%
143 317 460 57.52% 100% 56 30 86 77.78% 100% 100% 70% max

To
ol
s

90 90 90 90 90 90 90 90 60 60 64 64 count
8.82 29.97 38.79 12.95% 87.05% 2.37 2.40 4.77 32.67% 67.33% 28.75% 8.14% mean
25.64 22.92 38.89 14.82% 14.82% 11.25 3.58 12.53 36.29% 36.29% 36.93% 9.40% std

0 3 3 0% 11.28% 0 0 0 0% 0% 0% 0% min
2.50 26 27.50 8.86% 91.14% 0 1 1 26.79% 73.22% 11.80% 3.85% 50%
228 135 257 88.72% 100% 104 17 109 100% 100% 100% 31.71% max

A
ll

202 202 202 202 202 202 202 202 145 145 163 163 count
12.33 34.08 46.41 17.33% 82.67% 3.31 4.02 7.34 32.58% 67.42% 28.71% 11.53% mean
25.05 31.03 50.77 15.62% 15.62% 9.69 5.95 13.80 30.73% 30.73% 32.26% 12.67% std

0 1 1 0% 11.28% 0 0 0 0% 0% 0% 0% min
4 27 34 14.82% 85.18% 0 2 2 30.43% 69.57% 20% 7.69% 50%

228 317 460 88.72% 100% 104 34 109 100% 100% 100% 70% max

M
ob
ile

Fr
am

ew
or
ks

50 50 50 50 50 50 50 50 17 17 30 30 count
8.40 23.16 31.56 12.01% 87.99% 1.22 2.98 4.20 22.38% 77.62% 10.33% 9.35% mean
28.57 30.19 55.89 14.33% 14.33% 3.82 7.25 10.61 28.90% 28.90% 20.57% 14.12% std

0 1 1 0% 45.40% 0 0 0 0% 0% 0% 0% min
1 11 12 6.70% 93.30% 0 0 0 10% 90% 0% 0% 50%

184 153 337 54.60% 100% 22 36 58 100% 100% 66.67% 55.56% max

Li
br
ar
ie
s

60 60 60 60 60 60 60 60 24 24 24 24 count
2.02 12.17 14.18 6.43% 93.57% 0.33 1.45 1.78 13.13% 86.87% 14.59% 12.20% mean
5.87 13.86 19.31 9.11% 9.11% 1.07 2.75 3.52 23.68% 23.68% 26.20% 14.89% std

0 1 1 0% 67.69% 0 0 0 0% 0% 0% 0% min
0 8 9 0% 100% 0 0 0 0% 100% 0% 9.09% 50%
42 88 130 32.31% 100% 6 13 14 100% 100% 100% 53.33% max

To
ol
s

42 42 42 42 42 42 42 42 7 7 12 12 count
1.40 15.10 16.50 3.93% 96.07% 0.07 0.33 0.40 16.67% 83.33% 12.78% 3.52% mean
3.31 12.32 14.86 7.30% 7.30% 0.26 0.93 1.11 23.57% 23.57% 29.47% 9.01% std

0 1 1 0% 73.33% 0 0 0 0% 50% 0% 0% min
0 12 12 0% 100% 0 0 0 0% 100% 0% 0% 50%
16 51 60 26.67% 100% 1 5 6 50% 100% 100% 31.25% max

A
ll

152 152 152 152 152 152 152 152 48 48 66 66 count
3.95 16.59 20.54 7.58% 92.42% 0.55 1.64 2.20 16.92% 83.08% 12.33% 9.33% mean
17.06 20.85 35.78 11.15% 11.15% 2.33 4.62 6.63 25.45% 25.45% 24.13% 13.80% std

0 1 1 0% 45.40% 0 0 0 0% 0% 0% 0% min
0 9 10 0% 100% 0 0 0 0% 100% 0% 0% 50%

184 153 337 54.60% 100% 22 36 58 100% 100% 100% 55.56% max

M
ul
ti-
pl
at
fo
rm

Fr
am

ew
or
ks

22 22 22 22 22 22 22 22 18 18 18 18 count
22.18 46 68.18 21.37% 78.63% 10.77 10.05 20.82 36.74% 63.26% 42.36% 21.46% mean
42.68 39.17 78.92 15.19% 15.19% 25.19 11.81 35.35 30.59% 30.59% 29.61% 16.37% std

0 4 4 0% 45.45% 0 0 0 0% 0% 0% 0% min
11 35 46 23.53% 76.47% 2 7.50 9.50 34.52% 65.48% 50% 25.90% 50%
204 170 374 54.55% 100% 116 44 160 100% 100% 100% 57.14% max

Li
br
ar
ie
s

35 35 35 35 35 35 35 35 29 29 26 26 count
6.86 26.57 33.43 12.23% 87.77% 2.23 6.54 8.77 25.39% 74.61% 52.26% 26.53% mean
12.88 17.92 28.30 13.16% 13.16% 3.39 6.80 9.36 24.95% 24.95% 34.22% 20.70% std

0 2 2 0% 50% 0 0 0 0% 0% 0% 0% min
2 24 26 10% 90% 1 5 7 18.18% 81.82% 50% 19.44% 50%
61 78 122 50% 100% 14 29 41 100% 100% 100% 78.95% max

To
ol
s

6 6 6 6 6 6 6 6 5 5 6 6 count
8.33 30.67 39 19.88% 80.12% 1.67 1.67 3.33 50.77% 49.23% 26.39% 3.82% mean
10.41 28.01 37.68 11.35% 11.35% 2.73 2.42 4.84 50.03% 50.03% 29.07% 6.49% std

1 7 11 6.98% 63.64% 0 0 0 0% 0% 0% 0% min
3.50 23.50 27.50 20.84% 79.16% 0.50 0.50 1.50 53.85% 46.15% 25% 1.25% 50%
28 80 108 36.36% 93.02% 7 6 13 100% 100% 58.33% 16.67% max

A
ll

63 63 63 63 63 63 63 63 52 52 50 50 count
12.35 33.75 46.10 16.15% 83.85% 5.16 7.30 12.46 31.76% 68.24% 45.59% 21.98% mean
27.74 29.02 54.14 14.25% 14.25% 15.46 8.89 22.66 30.28% 30.28% 32.57% 19.17% std

0 2 2 0% 45.45% 0 0 0 0% 0% 0% 0% min
3 28 36 13.33% 86.67% 1 4 7 22.50% 77.50% 50% 17.80% 50%

204 170 374 54.55% 100% 116 44 160 100% 100% 100% 78.95% max

EASE 2020, April 15–17, 2020, Trondheim, Norway Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit Gheyi, and Baldoino Fonseca

NDTCE/NDTE NDTSTE/NDTE

0%
20%
40%
60%
80%

100%
Desktop/Server Mobile Multi-platform

Figure 5: Ratios of NDTCE/NDTE and NDTSTE/NDTE.

NDUSTE/NDUE) and that there are more standard/third party ex-
ceptions being tested (i.e., ratios NDTCE/NDTE andNDTSTE/NDTE).
Notice that we obtain the first two ratios by analyzing exclusively
the SUT. Also, we obtain the other two ratios by analyzing exclu-
sively the test methods. Now our intention is to understand, given
the distinct used exceptions throughout the SUT, how many have
associated test methods?

To do so, we take the Number of Distinct Tested Custom Excep-
tions (NDTCE) and divide by the Number of Distinct Used Custom
Exceptions (NDUCE). Likewise, we divide the Number of Distinct
Tested Standard/Third-party Exceptions (NDTSTE) by the Number
of Distinct Used Standard/Third-party Exceptions (NDUSTE). To
better explain these ratios, consider the ghidra project. This project
has 138 distinct used custom exceptions (NDUCE) and 114 distinct
used standard/third-party exceptions (NDUSTE). Regarding the
tests, we have 33 tested custom exceptions (NDTCE) and 16 tested
standard/third-party exceptions (NDTSTE). This way, when calcu-
lating the ratios we achieve the following: 33/138 = 23.91% and
16/114 = 14.03%. Notice that, despite the relatively close numbers
of distinct used custom exceptions (i.e., 138) and standard/third-
party (i.e., 114), the test methods cover more custom exceptions
than standard/third-party ones. Once again, we discarded projects
that lead to a division by zero in columns NDTCE/NDUCE or NDT-
STE/NDUSTE, and the final number of projects in each platform
and domain is presented at the row “projects” in Table 3. Figure 6
illustrates the distribution of these ratios. According to our results,
in 141 out of 254 (55.51%) projects the tests cover more custom
exceptions than standard/third-party ones. However, the ratio in
favor of custom exceptions is higher when considering the desk-
top/server (92 out of 149, i.e., 61.74%) and multi-platform projects
(34 out of 52, i.e., 65.38%). The opposite happens for the mobile
platform, where only 15 out of 53 (28.30%) projects cover more cus-
tom exceptions. Only six out of 254 (2.36%) projects (i.e., mockito,
spring-batch, vavr, spring-data-redis, thumbnailator, and RxJava)
have test methods that cover more than 50% of both the distinct
used custom and standard/third-party exceptions.

Thus, our results suggest that, for the projects we analyzed,
developers tend to create more test methods for distinct custom
exceptions than for distinct standard/third-party exceptions in two
platforms (i.e., desktop/server and multi-platform). We performed
a statistical test to check if this difference is statistically significant.

We used the ratios NDTCE/NDUCE and NDTSTE/NDUSTE as in-
put. First, we applied the Shapiro-Wilk test [23] to formally test for
normality in each platform. After applying this test, we verified that
our data do not follow a normal distribution. Therefore we applied
the Mann-Whitney U Test [1]. We follow the convention of consid-
ering a factor as being significant to the response variable when

p-value < 0.05. For the desktop/server and multi-platform projects
we have significant differences (i.e., p-value 1.07−3 and 1.30−4, re-
spectively) between the cover ratios of custom and standard/third-
party exceptions. However, the same result cannot be observed in
the mobile platform, in which no significant statistical differences
was found (i.e., p-value 0.25).

Frameworks Libraries Tools

0%

20%

40%

60%

80%

100%
Desktop/Server Mobile Multi-platform

All

(a) Custom Exceptions (NDTCE/NDUCE).

Frameworks Libraries Tools

0%

20%

40%

60%

80%

100%
Desktop/Server Mobile Multi-platform

All

(b) Standard/Third-party Exceptions (NDTSTE/NDUSTE).

Figure 6: Ratios of NDTCE/NDUCE and NDTSTE/NDUSTE.

RQ3: How do developers perceive the
exceptional behavior testing?
Overall, 66 developers completed our survey. Figure 7 summarizes
the survey results. The majority of the respondents (69.70%) consid-
ers exceptional behavior testing as important. Moreover, 37.90% of
the participants prioritize custom exceptions over standard/third-
party, which is also in accordance to the findings of RQ2, in partic-
ular when considering desktop/server and multi-platform projects.

0 10 20 30 40

> 10 years

7-10 years

4-6 years

< 1 year

40 (60.6%)

13 (19.7%)

12 (18.2%)

1 (1.5%)

(a) Java experience.

0 10 20 30

Very
Important

Important

Somewhat
Important

Not
Important

19 (28.8%)

27 (40.9%)

19 (28.8%)

1 (1.5%)

(b) Exceptional tests importance.

0 10 20 30 40

Does not
matter

Custom
Exceptions
Standard/

Third-party

None

35 (53.0%)

25 (37.9%)

5 (7.6%)

1 (1.5%)

(c) Prioritization.

0 10 20 30

Strongly
agree

Agree

Neutral

Disagree
Strongly

Disagree

7 (10.6%)

28 (42.4%)

25 (37.9%)

5 (7.6%)

1 (1.5%)

(d) “Developers tend to neglect.”

Figure 7: Survey Answers.

Regarding the sentence “Software developers neglect tests that
focus on exceptional behavior,” the majority (53%) of the participants

Is Exceptional Behavior Testing an Exception?
An Empirical Assessment Using Java Automated Tests EASE 2020, April 15–17, 2020, Trondheim, Norway

agrees with it. This way, the results are in sharp agreement with
the findings of RQ1. Also, some developers left some comments
on this sentence, and we noticed that some of these are similar.
To better understand them, two researchers independently read
the comments. Then, they agreed that 34 out of 39 comments fit
into 8 categories. Comments with disagreements with respect to
which category they belong to were discarded. Figure 8 presents
the comments according to these categories in terms of a word
cloud.

As can be observed, the majority of respondents stated that
developers usually write tests for the “Happy Paths.”

Focus on Happy Path
Rarely prioritized

Exceptions are harder to test
I cannot agree or disagree

We do not neglect them
Minority of the tests

Exceptions are obvious points for failure

Developers neglect test in general

Figure 8: Word Cloud presenting 8 categories of the com-
ments.

“It’s much easier to write tests that check the success
case. Writing tests for failure cases is a little harder.”
“Developers usually focus on the common or ‘good’ cases.”
“Most applications only do sunshine tests.”

Also, we found comments that highlight the low importance
given by some developers for the exceptional behavior testing.

“The least important of all tests.”
“Exceptional behavior testing is rarely prioritized.”
“It’s often ignored because of the assumption that it only
applies to an edge case.”

On the other hand, we also found participants that mentioned
that exceptional behavior testing cannot be neglected.

“My team at least does not neglect them.”
“Exceptions are [...] some of the first things that I consider
when writing unit tests.”
“In my team we pay attention to it.”

5 THREATS TO VALIDITY
The tool developed and applied in this study is not able to identify
all the exceptions used in the throw instructions, throws clauses,
and catch blocks, as well as in JUnit, TestNG, and AssertJ exception-
testing constructs. This is due to the fact that such instructions allow
the use of Superclasses (e.g., Exception or RuntimeException),
and other object-oriented complex features such as polymorphism,
inheritance, reflection, or generic types. In addition, we observed
that both the source code and the test methods might be structured
in different ways, which hinder their parsability (e.g., a throw in-
struction in which the exception is wrapped in a method call and
a throws clause parameterized with a generic type). To sum up,
our tool was not able to properly identify the exceptions used in
approximately 3.50% of the exception-handling constructs, and in
approximately 4.50% of test methods.

Also, our projects might have tests written using testing frame-
works not covered by our tool. Nevertheless, we focus on very
common Java testing technologies (i.e., JUnit, TestNG, and AssertJ).
Thus, we do not expect major differences in the results.

Our selection process lies in the use of the GitHub query API and
in the number of stars. The number of stars is a strong indicator on
the number of developers interested in the project [24]. However,
if the number of stars of some projects has been inflated by, for
instance, the use of automated tools, projects with little relevance
may have been included as objects of this study. We mitigate this
threat by employing a criterion to assess whether the selected
project has automated tests.

Our classification per platform and domain may represent a
threat. Besides the use of a website that relies on maven dependen-
cies and of a GitHub query, two researchers checked the classifica-
tion independently, minimizing this threat.

Our survey relies on the “test” word to select potential partici-
pants. This way, we may select developers not experienced in tests,
since the word is too general and may not be related to the scope of
this paper. However, the participants of our survey reported they
have great experience in Java and in Java testing frameworks.

6 RELATEDWORK
Previous works aim to extend the coverage of testing for exception
handling constructs. Goffi et al. [13] presented Toradocu, a tool
that automatically generates tests from comments extracted from
Javadoc. Also, they conducted a study based on 10 open source Java
libraries and concluded that developers “do not pay equal attention
to testing exceptional behavior.” To conclude that, they used one
metric, i.e., they computed the throw statement coverage in com-
parison to other code instructions. They observed that the throw
statement coverage is usually significantly low. Bernardo et al. [3]
proposed an agile approach to define exceptional behavior of a sys-
tem throughout the software development processes. They claim
that “manually-written test suites tend to neglect exceptional behav-
ior.” Despite these claims, the objective of both works [3, 13] is
not to analyze whether and how developers test the exceptional
behavior, i.e., they neither provided an in-depth investigation as
we do nor a study to better understand the developer’s thoughts.
Differently, this is our main focus. So, we analyze 417 open source
Java projects, use several metrics (collected based on parsing activi-
ties), and also compare custom and standard/third-party exceptions.
Also, our study investigates whether there are differences in our
numbers with respect to software platforms and domains. Finally,
we also conduct a survey to confirm our quantitative results.

Romano et al. [20] used a genetic algorithm that evolves a popula-
tion of test data to cover paths between input parameters and code
statements that throws potential null pointer exceptions. Other
works also try to extend the coverage of exception code, but with
support of fault injection. Fu et al. [12] developed a compiler-
directed fault injection static analysis to support white-box cov-
erage testing of exception handlers. Martins et al. [15] presented
VerifyEx, a tool that uses code instrumentation to exercise exception-
handling constructs to increase the coverage rate when testing
exceptional behavior. These works provide tools to automatically

EASE 2020, April 15–17, 2020, Trondheim, Norway Francisco Dalton, Márcio Ribeiro, Gustavo Pinto, Leo Fernandes, Rohit Gheyi, and Baldoino Fonseca

or semi-automatically improve the generation of tests for excep-
tion handling constructs. We also provide a tool, but to collect
metrics regarding not only exception-handling constructs but also
exception-testing constructs.

Osman et al. [18] performed an analysis on 90 Java projects and
evaluated how developers use the different types of exceptions
(custom, standard, and third-party). Differently, we checked if the
tests cover more custom exceptions or standard/third-party ones.

7 CONCLUDING REMARKS
We performed an empirical study to analyze whether and how
developers test the exceptional behavior in practice. To do so, we
implemented a tool to collect several metrics related to exception-
handling constructs; and exceptional-testing constructs. We per-
formed our study in 417 open source Java projects from three plat-
forms and three domains.

We found that 254 out of 417 (60.91%) projects have at least one
test method dedicated to exceptional behavior. To better analyze this
scenario, we also compute the ratio of the number of exceptional
behavior test methods to the total number of test methods.We found
that this ratio lies between 0% and 10% in 317 (76.02%) projects.
Regarding used exceptions in the SUT, 239 (57.31%) projects test
only up to 10% of them. We found that mobile developers in general
pay less attention to exceptional behavior tests when compared
to desktop/server and multi-platform developers. We also noticed
that libraries have more exceptional behavior test methods when
compared to frameworks and tools. We found more test methods
covering custom exceptions over standard/third-party exceptions
in desktop/server and multi-platform projects. Our statistical tests
showed that this difference is significant in both platforms. Finally,
we also conducted a survey to triangulate our results. In general,
the collected answers confirm our findings.

We conclude that exceptional behavior testing is rare and indeed
might be considered an exception. However, when considering
multi-platform projects and libraries, the scenario is a bit better
and these tests might not be so rare. Since developers tend to neglect
exceptional behavior tests, one potential direction to improve this
scenario is the use of automatic test suite generation tools.

As future work, we intend to execute the projects’ test suites.
So, we would not consider distinct exceptions, but all the locations
they appear in the SUT. We also intend to consider other testing
frameworks, and one more domain: applications.

REFERENCES
[1] Theodore W. Anderson and Jeremy D. Finn. 1996. The new statistical analysis of

data. Springer.
[2] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and

Kevin A. Schneider. 2016. How Developers Use Exception Handling in Java?. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). ACM Press, 516–519.

[3] Rafael D. Bernardo, Ricardo Sales Jr., Fernando Castor, Roberta Coelho, Nelio
Cacho, and Sergio Soares. 2011. Agile Testing of Exceptional Behavior. In Pro-
ceedings of the 25th Brazilian Symposium on Software Engineering (SBES ’11).
204–213.

[4] Bruno Cabral and Paulo Marques. 2007. Exception Handling: A Field Study in
Java and .NET. In Proceedings of the 21st European Conference on Object-Oriented
Programming (ECOOP ’07). Springer, 151–175.

[5] Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik. 2018.
How Swift developers handle errors. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR ’15). ACM Press, 292–302.

[6] Byeong-Mo Chang and Kwanghoon Choi. 2016. A Review on Exception Analysis.
Information and Software Technology 77, C (sep 2016), 1–16.

[7] Guilherme B. de Pádua and Weiyi Shang. 2017. Studying the Prevalence of Excep-
tion Handling Anti-Patterns. In Proceeedings of the 25th International Conference
on Program Comprehension (ICPC ’17). 328–331.

[8] Guilherme B. de Pádua andWeiyi Shang. 2018. Studying the Relationship between
Exception Handling Practices and Post-Release Defects. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR ’18). ACM Press,
564–575.

[9] Keith Ó Dúlaigh, James F. Power, and Peter J. Clarke. 2012. Measurement of
Exception-Handling Code: An Exploratory Study. In Proceedings of the 5th Inter-
national Workshop on Exception Handling (WEH ’12). IEEE Press, 55–61.

[10] Engineering and Systems Software Research Group (EASY). 2020. Research
Replication Package. https://github.com/easy-software-ufal/exceptionhunter

[11] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale Analysis of Framework-specific Exceptions
in Android Apps. In Proceedings of the 40th International Conference on Software
Engineering (ICSE ’18). ACM Press, 408–419.

[12] Chen Fu, Ana L. Milanova, Barbara G, Ryder, and David G. Wonnacott. 2005.
Robustness testing of Java server applications. IEEE Transactions on Software
Engineering 31, 4 (2005), 292–311.

[13] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA ’16). 213–224.

[14] Cheng-Ying Mao and Yan-Sheng Lu. 2005. Improving the robustness and reli-
ability of object-oriented programs through exception analysis and testing. In
Proceedings of the 10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS ’05). IEEE Press, 432–439.

[15] Alexandre L. Martins, Simone Hanazumi, and Ana C.V. deMelo. 2014. Testing Java
Exceptions: An Instrumentation Technique. In IEEE 38th International Computer
Software and Applications Conference Workshops (COMPSACW ’14). 626–631.

[16] Hugo Melo, Roberta Coelho, and Christoph Treude. 2019. Unveiling Exception
Handling Guidelines Adopted by Java Developers. In Proceedings of the 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER
’19). 128–139.

[17] Taiza Montenegro, HugoMelo, Roberta Coelho, and Eiji Barbosa. 2018. Improving
developers awareness of the exception handling policy. In Proceedings of the
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER ’18). 413–422.

[18] Haidar Osman, Andrei Chis, Claudio Corrodi, Mohammad Ghafari, and Oscar
Nierstrasz. 2017. Exception Evolution in Long-lived Java Systems. In Proceedings
of the 14th International Conference on Mining Software Repositories (MSR ’17).
IEEE Press, 302–311.

[19] Darrell Reimer and Harini Srinivasan. 2003. Analyzing exception usage in large
Java applications. In Workshop on Exception Handling in Object Oriented Systems
(EHOOS ’03).

[20] Daniele Romano, Massimiliano Di Penta, and Giuliano Antoniol. 2011. An
Approach for Search Based Testing of Null Pointer Exceptions. In Proceedings of
the 4th International Conference on Software Testing, Verification and Validation
(ICST ’11). IEEE Press, 160–169.

[21] Barbara G. Ryder, Donald Smith, Ulrich J. Kremer, Michael D. Gordon, and Nirav
Shah. 2000. A Static Study of Java Exceptions Using JESP. In Proceedings of the
9th International Conference on Compiler Construction (CC ’00). Springer, 67–81.

[22] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. 2016.
Understanding the Exception Handling Strategies of Java Libraries: An Empir-
ical Study. In Proceedings of the 13th Working Conference on Mining Software
Repositories (MSR ’16). ACM Press, 212–222.

[23] Samuel S. Shapiro and B. Wilk Martin. 1965. An Analysis of Variance Test for
Normality. Biometrika 52 (1965), 591–611.

[24] Hudson Silva and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software 146 (2018), 112–129.

[25] Saurabh Sinha and Mary Jean Harrold. 2000. Analysis and Testing of Programs
with Exception Handling Constructs. IEEE Transactions on Software Engineering
26, 9 (2000), 849–871.

[26] Rebecca J. Wirfs-Brock. 2006. Toward Exception-Handling Best Practices and
Patterns. IEEE Press 23, 5 (2006), 11–13.

[27] Pingyu Zhang and Sebastian Elbaum. 2014. Amplifying Tests to Validate Ex-
ception Handling Code: An Extended Study in the Mobile Application Domain.
Transactions on Software Engineering and Methodology 23, 4, Article 32 (2014),
32:1–32:28 pages.

https://github.com/easy-software-ufal/exceptionhunter

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Empirical Study
	3.1 Goal and Research Questions
	3.2 Studied Projects
	3.3 Collected Metrics
	3.4 Tool Description and Usage Scenarios
	3.5 Survey Data

	4 Results and Discussion
	5 Threats to Validity
	6 Related Work
	7 Concluding Remarks
	References

