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Abstract Over the last years, increasing attention has been given to creating
energy-efficient software systems. However, developers still lack the knowledge
and the tools to support them in that task. In this work, we explore our vision
that non-specialists can build software that consumes less energy by alternat-
ing diversely-designed pieces of software without increasing the development
complexity. To support our vision, we propose an approach for energy-aware
development that combines the construction of application-independent en-
ergy profiles of Java collections and static analysis to produce an estimate of
in which ways and how intensively a system employs these collections. We
implement this approach in a tool named CT+ that works with both desktop
and mobile Java systems and is capable of analyzing 39 different collection im-
plementations of lists, maps, and sets. We applied CT+ to seventeen software
systems: two mobile-based, twelve desktop-based, and three that can run in
both environments. Our evaluation infrastructure involved a high-end server,
two notebooks, three smartphones, and a tablet. Overall, 2295 recommenda-
tions were applied, achieving up to 16.34% reduction in energy consumption,
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usually changing a single line of code per recommendation. Even for a real-
world, mature system such as Tomcat, CT+ could achieve a 4.12% reduction
in energy consumption. Our results indicate that some widely used collec-
tions, e.g., ArrayList, HashMap, and Hashtable, are not energy-efficient and
sometimes should be avoided when energy consumption is a major concern.

Keywords Energy Consumption · Collections · Recommendation Systems

1 Introduction

Responsible energy consumption is a problem that permeates most mod-
ern human activity. It is not by chance that three of the UNs sustainable
development goals can be linked with better usage of energy supplies1. Energy5

became a particular problem for the IT industry with the extensive adop-
tion of battery-based devices such as mobile phones, smart watches, and lap-
tops, in conjunction with the already very power-hungry data-centers. If left
unchecked, just the data-centers alone could consume up to 20% of global
electricity and be responsible for 5.5% of the global greenhouse gas emissions10

by 2025, with the latter going up as high as 14% by 2040 (Andrae, 2017).
This clearly conflicts with the ambitious goals of reducing emissions by 40%
by 2030, aiming for neutrality by 20502, set by the President of the European
Commission. In fact, it is anticipated that the energy consumed by IT devices
and services in a globally connected world will soon have a bigger impact on15

global warming than the entire aviation industry (Mingay, 2007).
Developers have been more aware of the importance of energy for the en-

vironment and end-users, and are interested in building more energy-efficient
software (Manotas et al., 2016). Notwithstanding, thinking about algorithms
and solutions that are energy efficient is not a typical skill for a developer. In20

addition, some solutions that developers typically employ or recommend are
not backed up by scientific evidence (Pinto et al., 2014a). As pointed out by
previous work (Chowdhury and Hindle, 2016), energy-aware projects usually
are larger and the changes that could impact the application’s energy efficiency
are most of the times relegated to specialists.25

Building an application can be a complex task, requiring developers to
deal with interconnected and sometimes conflicting objectives in order to solve
non-trivial problems. One way to mitigate this complexity is to leverage the
availability of software solutions such as libraries, APIs, frameworks, gists3,
and answers from Q&A sites such as StackOverflow4. In this context, designing30

and implementing software has become a task of selecting appropriate solutions

1 ONU sustainable goals: https://sdgs.un.org/goals
2 EU guidelines: https://ec.europa.eu/commission/sites/beta-political/files/

political-guidelines-next-commission_en.pdf
3 Gist website: http://gist.github.com
4 StackOverflow website: https://stackoverflow.com

https://sdgs.un.org/goals
https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf
http://gist.github.com
https://stackoverflow.com
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among multiple options (Baldwin and Clark, 2000) and combining them to
build working systems. We call energy variation hotspots the programming
constructs, idioms, libraries, components, and tools in a system for which there
are multiple, interchangeable, readily-available solutions that have potentially35

different energy footprints.
Several previous papers have measured and analyzed different types of en-

ergy variation hotspots, such as programming languages (Oliveira et al., 2017;
Pereira et al., 2017; Georgiou and Spinellis, 2020), API usage (Aggarwal et al.,
2014; Linares-Vásquez et al., 2014; Rocha et al., 2019), thread management40

constructs (Pinto et al., 2014b; Lima et al., 2016), data structures (Hasan
et al., 2016; Lima et al., 2016; Pereira et al., 2016; Pinto et al., 2016), color
schemes (Li et al., 2014b; Linares-Vásquez et al., 2015), and machine learning
approaches (Mcintosh et al., 2019), among many others.

Unlike low-level abstractions, such as voltage and frequency scaling, devel-45

opers are familiarized with energy variation hotspots. Moreover, they make it
easy to experiment with different options to analyze their impact on energy,
since there are readily-available alternative implementations. Furthermore, the
cost of replacing one implementation by another tends to be low, since they
usually share common specifications (Pinto et al., 2016). If these algorithms50

adhere to a common specification, a recommendation tool can analyze their
usage context so as to recommend a potentially efficient alternative. This can
yield energy savings at a cheap cost in terms of development effort and does
not require specialist knowledge.

In this paper, we share our vision of a solution to help investigate the en-55

ergy behavior of energy variation hotspots within an application and, when
possible, make recommendations that can reduce its energy consumption. The
solution we propose to support non-specialists reduce the energy consumption
of an application comprises three steps. First, the available alternative solu-
tions are exercised to build execution environment-specific energy consump-60

tion profiles (Hasan et al., 2016). These profiles provide a mean to compare
the energy footprint of these solutions in an application-independent manner.
Second, the application is analyzed to gather information about the selected
energy variation hotspots, in particular, to estimate how intensively the sys-
tem uses them. That step is device-independent. Finally, these two pieces of65

information are combined to make potentially energy-saving recommendations
specific to the application-device pair.

We have instantiated our approach in a tool named CT+. Its goal is to
optimize the energy consumption of Java collections on desktop and Android
applications. Implementing the first step of our approach, it automatically runs70

multiple micro-benchmarks for 39 different Java collection implementations in
an application-independent manner and builds their energy profiles. List, Set,
and Map are the three collections targeted by these collection implementations.
The latter stem from the Java Collections Framework (25 implementations),
Apache Commons Collections (5 implementations), and Eclipse Collections75

(9 implementations). With data from these micro-benchmarks, it builds the
energy consumption profiles. For the second step, an inter-procedural static
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analysis is performed on the application source code. This analysis collects,
for each instantiation of a collection implementation, information such as fre-
quency and location of use, method and variable names, calling methods, etc.80

The third and final step consists of recommending the most efficient imple-
mentation for each energy variation hotspot, considering both the energy con-
sumption of the multiple operations of each collection implementation and the
extent to which each collection is used in the application. The recommenda-
tions made by CT+ are applied automatically.85

We evaluated CT+ in two studies aiming to answer the following four
research questions:

RQ1: To what extent can we improve the energy efficiency of an application
by statically replacing Java collection implementations?

RQ2: Are the recommendations device-independent?90

To answer RQ1 and RQ2, CT+ analyzed the source code of 17 software
systems across 7 devices, making energy saving recommendations for 13 of
them. By analyzing the recommendations made by CT+ and their effect on
the energy consumption of these systems, we concluded that some very popular
collection implementations, such as ArrayList, Hashtable and HashMap, have95

poor energy efficiency.

RQ3: How much does the workload size impact the energy efficiency of a Java
collection implementation?

RQ4: Are the recommendations profile-independent?

To answer RQ3 and RQ4, we created 6 different energy profiles, simulating100

distinct kinds of workloads an application may be subject to. We applied the
recommendations made by CT+ to 6 systems of the DaCapo benchmark suite.
The results show that these different profiles behave very differently, depending
on the circumstances. The difference goes up to 6.18× more energy saved when
comparing the best performing profile with the worst one for the same software105

system.

Overall, 2295 recommendations that impacted the energy consumption
were made across 17 software systems, 12 targeting a desktop environment, 2
targeting a mobile environment, and 3 that work in both scenarios, for a total
of 64 modified versions. Most of these systems were non-trivial with thou-110

sands of lines of code (LoC), such as BioJava with 914kLoC, Cassandra
with 466kLoC, and Tomcat with 433kLoC. With no prior knowledge of the
application domains or the system implementations, CT+ made positive rec-
ommendations for 13 out of the 17 systems. It was possible to reduce the energy
consumption of software systems up to 16.34% on a desktop environment and115

14.78% on a mobile environment, just by replacing collection implementations.
For a small number of modified versions (2 out of 64), recommendations made
by CT+ degraded the energy efficiency, up to 1.21%.

The results of our studies highlight the need to re-assess the adoption of
some widely popular, poorly-optimized collection implementations from the120
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Java Collections Framework, such as ArrayList, Hashtable, and HashMap.
Recommendations to replace uses of these collection implementations by more
efficient alternatives were common in our evaluation. In addition, there was not
a single case where HashMap was was recommended, and just three cases for
Hashtable, with data suggesting that Hashtable is becoming less used by de-125

velopers. Furthermore, 89% of the recommendations made by CT+ suggested
the use of collection implementations not from the JCF. The data related to
this work can be found at https://energycollections.github.io/.

This work is an extended and improved version of a previously-published
paper (Oliveira et al., 2019). We improved the original work in a number of dif-130

ferent ways: (i) Two new research questions about the energy behavior of Java
collections were answered (i.e., RQ3 and RQ4); (ii) Brand new experiment
using a different methodology aiming to evaluate the impact of using different
strategies to build energy profiles was added; (iii) Five new, mature software
systems were included in our pool. (iv) More in-depth analysis of collection135

usage was done, in particular, the impact of profile creation strategies and
workloads on the recommendations and how to make profile creation time-
efficient; and (v) A new mobile device and desktop machine were included in
the original study.

This article is structured as follows: Section 2 briefly describes the im-140

portance of Java Collections; Section 3 presents the related work, with a
particular focus on empirical studies about energy consumption and Java Col-
lections recommendation tools; Section 4 introduces our approach to help
develop more energy efficient software systems; Section 5 demonstrated how
we used our proposed approach to develop a recommendation tool, CT+. This145

tool focus on optimizing applications to use the most energy efficient collec-
tions implementation in Java; Section 6 displays the results from our ex-
periments analyzing the energy consumption of different devices and energy
profiles; Section 7 report our findings about the energy consumption of Java
Collections; Section 8 presents the threats to validity; and Section 9 shows150

the conclusion of this article.

2 Java Collections

Collections are widely used by developers, in both mobile and desktop environ-
ments. They provide easy access to reliable implementations that can reduce
the complexity of developing applications. Java’s collections in particular are155

usually subdivided in three different APIs: Lists, Maps, and Sets. These cat-
egories are divergent in several points but the main factors that distinguish
them are: Lists are ordered and indexed (with possible duplicates), Sets are
unordered and do not admit duplicates, and Maps are based on key-value
pairs and hashing (keys are unique but values can be duplicated).160

In Java, each collection’s API has multiple implementations. This is ex-
pected since there is a number of different algorithms and data structures that
can implement the abstract concept of lists, sets and maps. Examples include

https://energycollections.github.io/


6 Wellington Oliveira et al.

using dynamically-allocated list nodes and making the list doubly-linked, as
in LinkedList, or a resizable array, as in ArrayList. Although both are im-165

plemented differently, they still respect the set of rules of a list and implement
the same interface, List. As a consequence, it is often possible to change the
list implementation being used in a given context by modifying a single line of
code, i.e., the line where the collection implementation class is instantiated.

Collection implementations that can be safely used by several concurrent170

threads are considered to be “thread-safe”. This safety usually comes with
extra complexity or inferior performance, which might favor the use of “thread-
unsafe” collections. In this work, we consider that it is never acceptable to
replace the use of a thread-safe collection implementation with a thread-unsafe
one. Conversely, although it is possible to replace a thread-unsafe collection175

implementation using a thread-safe one, this is not efficient in practice (Pinto
et al., 2016).

There are many different ways a collection can be implemented, and these
diverse implementations can have a non-negligible impact on energy consump-
tion. The usual way to use collections in Java is through the Java Collections180

Framework (JCF). Yet, previous work (Pinto et al., 2016; Hasan et al., 2016;
Costa et al., 2017) has shown that alternative implementations can have a
positive impact on the energy consumption of applications. Based on that, for
this research we are looking at collections from three different sources: Java
Collections Framework5, Apache Commons Collections6, and Eclipse Collec-185

tions7.

To get a glimpse at the usage of these alternative implementations in Java
projects, in April 2020 we executed a query on GitHub based on the pack-
age names of Eclipse Collections (org.apache.commons.collections) and
Apache Common Collections (org.eclipse.collections). The query results190

showed that these collections are in widespread use, with 1,276,939 cases for
Apache Common Collections and 537,956 for Eclipse Collections.

As expected, JCF collections, both thread-safe and thread-unsafe, are also
in widespread use. To investigate the adoption of JCF, we conducted another
simple query but, differently from Apache and Eclipse Collections, JCF does195

not have a package exclusively for collections. As a consequence, the query
for its implementations collections were executed individually, using the full
package name (e.g., java.util.ArrayList). The results suggest that thread-
unsafe collections are used more often than thread-safe collections by a fair
margin. For example, one the one hand, the most widely used thread-unsafe200

collection is ArrayList, a List implementation, with 38,642,021 occurrences
in our query. On the other hand, the most widely used thread-safe collection
is Vector, another List implementation, with 5,526,922 occurrences.

5 Java Collections Framework webiste: https://docs.oracle.com/javase/8/docs/

technotes/guides/collections/
6 Apache Commons Collections website: https://commons.apache.org/proper/

commons-collections/
7 Eclipse Collections website: https://www.eclipse.org/collections/

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://www.eclipse.org/collections/
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In our previous study (Oliveira et al., 2019), we conducted a similar query
analyzing collection usage in Github projects as of January of 2019. As shown205

in Table 1, overall, there was an increase in collection usage for all collection
types. The table explicitly separates thread-safe and thread-unsafe JCF collec-
tion implementations, since they represent the vast majority of the collection
implementations. Nevertheless, the Apache and Eclipse Collections both have
thread-safe and thread-unsafe implementations.210

Our queries results show that the average increase in the utilization of the
collection implementations between January 2019 and April 2020 was 14.83%
for thread-unsafe collections and 17.77% for thread-safe. The only two collec-
tions with a growth rate of less than 10% were ArrayList (9.54% and 3,363,929
new occurrences) and Hashtable (4.52% and 90,235 new occurrences).215

Because of the extensive adoption of ArrayList, the growth rate naturally
tends to slow down, since most projects already use it. Hashtable, on the
other hand, appears to have fallen from grace, with developers opting to use
other solutions when they need to use a thread-safe map implementation, like
ConcurrentHashMap (40.71% growth rate and 455,779 new occurrences). The220

data from our first query shows Hashtable with 78% more occurrences than
ConcurrentHashMap. However, in our last query, that difference has been re-
duced to 32%. If the growth rate continues, by year 2021 ConcurrentHashMap

will have more occurrences than Hashtable.

3 Related Work225

Energy profiling research has been conducted in different contexts, including
embedded systems (Šimunić et al., 2000), cloud computing (Chen et al., 2011),
concurrent programming primitives (Pinto et al., 2014b; Lima et al., 2016),
neural networks and models (Romansky et al., 2017). These studies share a
common finding: simple changes can reduce energy consumption considerably.230

However, most of these studies do not provide tool support for developers. If
interested, developers are still required to have: (1) the infrastructure (soft-
ware and, eventually, hardware) to conduct the experiments, and (2) in-depth
knowledge of low-level implementation details. As a result, non-specialist de-
velopers have little chance to apply the findings in real-world scenarios. In235

contrast, our approach is focused on non-expert developers. They do not have
the knowledge neither, time, or tools to understand the energy impact of en-
ergy variation hotspots, but still want to reduce energy consumption. With
an appropriate design and implementation (Sections 4 and 5), we believe that
our approach can be reused and useful at scale.240

In this article, we introduce a general idea to save energy during software
development and instantiate it in a tool called CT+. We take this into ac-
count by organizing related work in terms of empirical studies (which create
knowledge about energy efficiency) and recommendation tools (which apply
that knowledge).245

Empirical studies. In recent years, researchers have empirically analyzed
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Table 1 Adoption of collections across Github Java projects. All implementations came
from the package java.util

.

Implementation Jan. 2019 Apr. 2020 Growth

Thread unsafe collections

ArrayList 35,278,092 38,642,021 9.54%
HashMap 16,602,391 19,418,572 16.96%
HashSet 6,470,505 8,104,539 25.25%
LinkedList 3,763,660 4,577,164 21.61%
LinkedHashMap 1,470,500 1,953,047 32.82%
TreeMap 1,122,886 1,370,672 22.07%
TreeSet 950,890 1,174,078 23.47%
LinkedHashSet 689,397 944,604 37.02%

Sum of thread unsafe 66,348,321 76,184,697 14.83%

Thread safe collections

Vector 4,731,762 5,526,922 16.80%
Hashtable 1,994,173 2,084,408 4.52%
ConcurrentHashMap 1,119,704 1,575,483 40.71%
CopyOnWriteArrayList 237,541 310,188 30.58%
CopyOnWriteArraySet 70,680 94,507 33.71%
ConcurrentSkipListMap 39,012 52,394 34.30%
ConcurrentSkipListSet 26,826 36,671 36.70%

Sum of thread safe 8,219,698 9,680,573 17.77%

org.apache.commons.collections 1,022,778 1,276,939 24.85%

org.eclipse.collections 466,394 537,956 15.34%

several different aspects of energy consumption on software engineering. Rocha
et al. (2019) took a look at the energy behavior of I/O APIs on 22 Java bench-
marks and 3 macro-benchmarks. They showed that there is not a single API
that can be used on every application independently. Another important as-250

pect of their work was that that small modifications on these APIs can result
in a better energy performance by already optimized applications. Georgiou
and Spinellis (2020) investigated the energy consumption impact of seven dif-
ferent programming languages on inter-process communication, finding out
that the implementations on Javascript and Go usually dare the most energy255

efficient. Duarte et al. (2019) developed a framework based on model analysis
to study the energy consumption of software systems and then evaluated it
experimentally. Among the different usages of their framework, one is to detect
refactoring points that could be changed to reduce energy consumption.

Another way to look into the ways developers can save energy is try opti-260

mize their energy choices even before the system development starts, that is,
at the design phase. Sahin et al. (2012) made an investigation about the energy
impact of 15 different design patterns. Their results shows that design patterns
could have a high effect on the energy consumption, going from a pattern that
consumes 10 times more energy than the original code to another one that265

only consumes half the energy. In a similar fashion, Cruz and Abreu (2017)



Improving Energy-Efficiency by Recommending Java Collections 9

analyzed the energy impact of code smells on Android applications. On their
work, they present empirical evidence that these anti-patterns increase the
energy consumption of mobile applications and should be avoid by developers
to help create more energy efficient apps. Lyu et al. (2017) analyzed the usage270

of local database requests in Android applications, founding out that the most
expensive operations are database initialization and write operations. These
operations are often used in loops and developers could design them to be
bundled to reduce their energy consumption. Chowdhury et al. (2019) studied
the impact of different strategies to optimize the energy consumption of the275

Model-View-Controller architectural pattern (MVC). Two strategies were used
to optimize how these types of applications handle data influx: (i) bundling
the data updates or (ii) using only the most recent one. These strategies were
used to create new versions of the applications. With changes that are al-
most imperceptible to the human eye and do not impact the user experience,280

they showed that it is possible to reduce the energy consumption of a MVC
application up to 36%.

More specifically, some works have dealt only with recommending more
energy-efficient collections. Hasan et al. (2016) compared the energy con-
sumption of collections in Java. They built an energy consumption profile285

for each collection they analyzed, aiming to answer which implementation
of each collection (Lists, Sets, and Maps) consumed less energy. They used
that information to manually improve the efficiency of a set of selected ap-
plications. Pinto et al. (2016) studied the thread-safe Java Collections on two
different desktop machines. The authors found that the cost of each opera-290

tion varies widely among different implementations of the same collection. For
instance, the authors found energy improvements of 66%, when changing to
a more energy efficient implementation of Map. Saborido et al. (2018) com-
pared two Android-specific collection implementations of Maps: SparseArray

and ArrayMap. These implementations were developed to be more efficient295

than HashMap. In summary, ArrayMap was considered worse than HashMap

when optimizing energy consumption and SparseArray was considered better
when the keys are primitives types.

Here we investigate the impact of software constructs in energy consump-
tion while also offering a recommendation tool that can be used by developers300

to save energy. Therefore, this work builds upon knowledge produced by pre-
vious studies to make recommendations in an automated manner.

Recommendation tools. Manotas et al. (2014) developed a general pur-
pose framework called SEEDS to guide developers on the laborious work of
creating energy-aware software systems. They instantiate the concepts of that305

framework with the objective of analyzing the consumption of different collec-
tion implementations from the JCF. While our proposal uses the concept of
energy profile and static analysis to analyze the applications and suggest an
implementation of a collection, SEEDS leverages dynamic analysis, executing
each different collection for every application and comparing their energy con-310
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Fig. 1 An overview of our approach. Phase I is application-independent, Phase II is device-
independent, and Phase III uses the energy profile and the information about the system
under analysis.

sumption. Furthermore, it did not consider the impact of multithreading and
only targeted a desktop environment.

Pereira et al. (2018) implemented an energy-aware tool called jStanley,
aiming to recommend the best collection implementation among several over
the Java Collections Framework. jStanley was implemented as an Eclipse plu-315

gin and worked using experimental results from prior work by the same au-
thors (Pereira et al., 2016). It does not account for the impact of loops and it
works exclusively in a mobile environment. Furthermore, it does not account
for thread-safety.

As stated before, this work is an extended and improved version of a320

previously-published paper analyzing the energy consumption of Java col-
lections (Oliveira et al., 2019). With this extension we aim to improve the
understanding of the energy behavior of Java collections.

4 Overview of the Proposed Approach

In this section we propose a novel approach to help developers create more325

energy efficient applications. This approach can be used for general-purpose
development, not being restricted to a specific scenario, development envi-
ronment, device, or application. The proposed approach is organized in three
phases: (i) creation of the energy profiles, (ii) collection usage analysis, and
(iii) recommendation of source code modifications that have the potential to330

reduce energy consumption. Figure 1 provides an overview of our approach.
In this section we present a high level overview, with the three phases

detailed next. In Section 5 we present our instantiation of this approach in the
CT+ tool, dealing with the optimization of Java collections.

Phase I: Creation of Energy Profiles. Here we select a group of pro-335

gramming constructs to analyze and build their energy profiles. This selection
determines the energy variation hotspots of the applications that will be an-
alyzed in Phase II. Good choices are constructs that are used intensively and
that have alternative implementations. As mentioned before, collections, con-
currency control mechanisms, and APIs are examples of potential candidates.340
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Having selected the candidate constructs and their alternative versions, it
is necessary to build their energy profiles (Hasan et al., 2016). The energy
profile can be seen as a set of numerical values representing the energy cost
of a specific construct, making it possible to compare the energy efficiency of
similar constructs under the same circumstances. The main insight of using en-345

ergy profiles is that it is possible to order interchangeable pieces of software by
their energy consumption, without actually quantifying their energy consump-
tion. This idea can be explored in diverse situations. For example, previous
work (Linares-Vásquez et al., 2015; Wan et al., 2017; Linares-Vásquez et al.,
2018) computed energy profiles for the colors that can appear in an OLED350

screen and employed this information to suggest color schemes for smartphone
applications that spend less energy. This improvement could be achieved with-
out the need to precisely measure the amount of energy consumed by each color
individually.

Energy profiles can be produced by executing several micro-benchmarks to355

collect information about the energy behavior of these programming constructs
in an application-independent way. This step needs only to be performed once
for a given construct, per execution platform. The results can then be reused
across multiple software systems employing these constructs. In Section 5 we
define energy profiles in a more precise manner for the specific context of360

collection implementations. The energy profiles created in Phase I are used as
input to make the recommendations in Phase III.

Phase II: Collection Usage Analysis. This phase extracts information
about how the target software systems use the selected programming con-
structs, for example, usage context and frequency. This information can be365

extracted either dynamically or statically. In our instantiation of this ap-
proach, we relied on a purely static approach. This has the advantage of being
platform-independent and not requiring multiple executions of the system un-
der analysis. However, the static approach is more prone to imprecision, since
it is not possible to know how often an operation will be executed until the370

system is actually executed.

Dynamic approaches make it possible to estimate more precisely how inten-
sive energy variation points will be used in realistic scenarios. Notwithstand-
ing, the precision of dynamic approaches depends heavily on the employed
workload, specially for complex software systems that make intensive use of375

multiple resources (CPU, disk, wired network, wireless network, etc.). Dynamic
approaches could benefit more UI-focused applications, as these are harder to
exercise with static analysis. It could also be useful for cases where part of the
logic is outsourced or there’s a heavy dependency on non-deterministic factors
(e.g., GPS locations or temperature).380

The output of this phase is heavily dependent on a number of different
factors. Examples may include the kind of construct, line of code where the
construct is used, the number of times it is instantiated or invoked, the thread
running the programming construct, if the invocation of the programming
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construct is placed inside a loop, among many others. The data collected from385

Phase II is used as input to make the recommendation in Phase III.

Phase III: Recommendation. This phase combines the energy profiles and
the results of the usage analysis, taking the data produced by Phases I and II
as input. Different formulae can be employed in this phase. A straightforward
approach is to linearly combine the energy profiles (created in Phase I) with390

the frequency of use (through the analysis made in Phase II) of the alterna-
tive constructs. Each of these combinations will yield an energy consumption
number that can be directly compared to determine the most energy-efficient
alternative. This is the approach we employed in our experiments. We make
it more concrete in the next section. Nonetheless, as with the previous phase,395

there is ample opportunity to explore different solutions to combine these two
pieces of information.

These three phrases summarize our approach to help developers save energy
while developing software systems. To be able to offer guidance in as many
scenarios as possible, they are open to a number of different instantiations.400

Phase I is application independent while Phase II is execution-environment
(device, operating system, runtime system) independent, leaving the possibil-
ity for the developer to leverage multiple implementations of each phase.

5 Instantiation for Java Collections

In this section, we describe how we have instantiated the proposed approach to405

work with Java collections. We developed a tool named CT+ that implements
the three phases explained in the previous section.

CT+ analyzes Java programs in desktop and mobile environments, rec-
ommending collections that could potentially reduce energy consumption. We
organize the presentation of the instantiation in terms of the three phases410

introduced by Section 4.

Phase I: Creation of Energy Profiles. In this phase, we build the en-
ergy profiles of the collections. These profiles are based on implementations
and operations of three kinds of collections: lists, maps, and sets. We use in-
terchangeable collection implementations for each kind of collection and their415

operations to create energy profiles that allow these implementations to be
compared from an energy consumption standpoint.

The three analyzed collections have differences among them. For example,
on lists it is possible to insert or to remove an element at a specific position,
differently from a map or a set. To reflect this behaviour, we distinguish op-420

erations to insert or remove list elements at the start, middle, or end of the
list. We also consider the “default” operation for insertion or removal. For
example, for insertions, it is the add method. We iterate over lists using three
different approaches: a seeded randomly generated number as index, an ex-
plicitly created iterator, and a for loop. Table 2 presents a summary of the425
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operations we analyze to build the energy profiles. Although there are other
possible operations (e.g., List.removeAll()), they are not used on this study.

In this section, we define a collection implementation C abstractly as a
tuple (N,T, S, o1, o2, ..., on), where N is the name of the collection imple-
mentation, e.g., ArrayList, HashMap, etc., T is the type of the collection,430

with T ∈ {List, Set,Map}, S is the thread-safety of the collection, with
S ∈ {ThreadSafe,NotThreadSafe}, and oi, with 1 ≤ i ≤ n represent the
operations of the collection implementation. The following tuple is an example
of how Vector could be represented:

Cv = (V ector, List, ThreadSafe, insert.start(e), insert.end(e), ..., on)435

In the previous example, insert.start(e) and insert.end(e) indicate that
these are operations that insert an element in the beginning and at the end of
the list, respectively.

The energy profile for a collection implementation is a tuple whose elements
are numbers, e.g., energy consumption in joules, that can be used to compare440

the energy cost of the same operations for different collection implementations
under the same execution environment. The energy profile of a collection im-
plementation C is produced by a profiler, a function that, in a given execution
environment and under a set of workloads, produces an energy profile:

profiler(C, env,w1, w2, ..., wn) = (C, env, e1, e2, ..., en)445

where env abstractly represents the execution environment in which the pro-
filer is running (machine, operating system, JVM version). wi, 1 ≤ i ≤ n, is
the workload for the operation oi, defined by the function workload(N, oi),
which produces a workload given the name of a collection implementation and
one of its operations. Finally, ei, with 1 ≤ i ≤ n, is the energy consumption450

value for oi.

Table 2 Operations used on each collection.

Operation Types

Lists

insertions start, middle, end, and default
iterations random, iterator, and loop
removals object, start, middle, end, and default

Maps

insertions default
iteration iterator and loop
removal default

Sets

insertions default
iteration loop
removal default



14 Wellington Oliveira et al.

Two energy profiles Pa and Pb for two collection implementations Ca and
Cb, respectively, can be compared as long as three constraints are satisfied:
Ca.T = Cb.T , Ca.S = Cb.S, and Pa.env = Pb.env. In other words, we cannot,
for example, compare energy profiles for a list and a set. In the same vein, it is455

not possible to compare a profile for a thread-safe implementation and one for
a non-thread-safe implementation, nor profiles obtained in two different exe-
cution environments. We assume that collection implementations whose T and
S elements are the same are, from an implementation standpoint, functionally
equivalent. For example, adding an element to an ArrayList is functionally460

equivalent to adding that element to a LinkedList, although this would not
be true for a Vector, since the latter is thread-safe. This is true in practice
for the vast majority of the collection implementations in the JCF, with very
few exceptions (e.g., WeakHashMap).

Table 3 lists all implementations analyzed in this work. Creating thread-465

safe collections based on thread-unsafe collections using the JCF is straight-
forward: one just needs to use specific static methods from the Collections

class to create synchronized Lists, Maps, and Sets. In this work, we labeled
those wrapped, thread-safe collections as follows: “Synchronized” + original
collection name, e.g., SynchronizedArrayList.470

We build energy profiles by running micro-benchmarks applied to the op-
erations of each collection implementation. Micro-benchmarks are a set of
instructions to measure the energy consumption of a specific piece of code by
exercising it repeatedly. In our case, a micro-benchmark executes our selected
operations a predetermined number of times for every implementation. For475

example, to collect the energy data, we execute 60,000 times the ArrayList’s
micro-benchmark to measure the add(start) method in one of our devices.
That predetermined number is energy-profile dependent and we discuss this
in more depth in Section 6.2.2.

The executions were made in a specific cycle of operations. We first perform480

insertions, then we iterate over the whole collection, and finally we remove all
elements previously stored in the collection. In cases where more than one type
of insertion or removal is necessary, e.g., lists, where it is possible to insert at
the start or end, we pair the classified insertions and removals before the
initial sequence (e.g., insert.start(e) and remove.start(e)). The energy485

consumption was collected throughout each operation. We used this approach
to make sure that removals and iterations are measured without the overhead
imposed by an insertion operation.

To execute the micro-benchmarks and build the energy profiles, we devel-
oped two different energy profilers, one for the desktop environment and one490

for the mobile environment. We had to create two different applications be-
cause these environments use different methods for gathering energy data and
are implemented on different platforms. Nevertheless, we employed the same
methodology to collect the energy consumed by each operation on a specific
collection implementation. In addition, both profilers were built according to495

the recommendations of Georges et al. (2007) for Java performance evaluation.
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Table 3 The selected implementations to be used in the experiments. We employed three
different sources: Java Collections Framework, Eclipse Collections and Apache Commons
Collections

Thread Safety Implementations

Lists

Safe
Vector CopyOnWriteArrayList

SynchronizedArrayList SynchronizedList

SyncronizedFastList

Unsafe
ArrayList LinkedList

FastList CursorableLinkedList

NodeCachingLinkedList TreeList

Maps

Safe

Hashtable ConcurrentHashMap

ConcurrentSkipListMap SynchronizedHashMap

SynchronizedLinkedHashMap SynchronizedTreeMap

SynchronizedWeakHashMap ConcurrentHashMap(EC)

SynchronizedUnifiedMap StaticBucketMap

Unsafe
HashMap LinkedHashMap

TreeMap UnifiedMap

HashedMap

Sets

Safe

ConcurrentSkipListSet CopyWriteArraySet

SetConcurrentHashMap SynchronizedHashSet

SynchronizedLinkedHashSet SynchronizedTreeSet

SynchornizedTreeSortedSet SyncronizedUnifiedSet

Unsafe
HashSet LinkedHashSet

TreeSet TreeSortedSet

UnifiedSet

The energy profiles for each collection implementation are used in Phase III
to make recommendations.

Phase II: Collection Usage Analysis. CT+ employs an inter-procedural
dataflow static analysis to gather information about the frequency of use and500

the context in which the collection operations are invoked. For a given program
starting point, e.g., the main method, it analyzes all the paths in the program
method call graph that can be reached from there. This analysis aims to iden-
tify calls to collection operations that appear within loops, including loops
from different methods. Each time an operation appears on the source code,505

CT+ adds it to the file containing all operations used by that software system.
One operation can be counted more than once, depending on its context. For
example, the operation “collection.bar()” can be called from the method
“foo()” in different parts of the code; one invocation of “collection.bar()”
might be inside a loop while another one may not be involved in loops. Each510

of these operations is counted separately by CT+.
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In this phase, among other pieces of information, for each invocation of
a collection operation, we collect: class name, collection type, concrete type,
calling method, name of the field storing the collection implementation ob-
ject, invoked collection operation, line of code, whether the invocation appears515

within a loop, and whether the invocation is performed from within a recursive
method.

Taking loops into account is important because operations inside them
are usually executed several times and thus consume more energy than ones
not invoked within loops. In our implementation, we use the nesting level of520

the loops as a heuristic to give weights to the operations that are performed
within them. Even though there are some approaches to determine loop bounds
(e.g., Rodrigues et al. (2014)), these works (1) do not cover many practical
loop usage scenarios for languages such as Java, where arrays are allocated
dynamically, and (2) typically require program execution. We then opted to525

use a more conservative approach and only take into account the nesting level
of the loops.

Phase III: Recommendation. CT+ makes the recommendations based on
three different factors about each collection implementation, for each target
system: (i) the energy profile information for that collection implementation;530

(ii) data about occurrences of the collection operations within the target sys-
tem; and (iii) whether those occurrences appear within loops or not.

More specifically, for each object c that is an instance of a collection im-
plementation C and each path in the program call graph where an opera-
tion on c is invoked, considering every collection implementation C ′ such that535

C.T = C ′.T , C.S = C ′.S, and the profiles for C and C ′ were built on the same
execution environment, CT+ calculates (1) the energy cost of the operations
outside loops, (2) the energy of operations inside loops, and then combines
these two pieces of information to calculate the energy factor EF according
to equation (3), which combines equations (1) and (2).540

E¬L(C ′, c) =

n∑
i=1

ei ∗NL(c.oi) (1)

In this formula, n is the number of operations in C, ei is the ith element of
the energy profile of C ′, notation c.oi indicates operation oi from collection
implementation C ′ invoked at object c, NL is a function that yields the number
of non-loop occurrences of oi targeting c for every path in the program call
graph.545

EL(C ′, c) =

n∑
j=1

m∑
d=1

ej ∗ ((Ld(c.oj) + 1)d+1 − 1) (2)

Differently from equation (1), here Ld yields the number of occurrences of oj
applied to c appearing within a loop of nesting level d for every path in the
program call graph, and m is the maximum loop depth of the program. The
nesting level of a loop affects the energy factor by increasing the exponent
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which dictates the weight of operations appearing within loops. The “+1”550

in the exponent and in the innermost summation guarantee that operations
appearing within a loop always have a greater weight that those that do not.
The “-1” within the innermost summation guarantees that operations not
appearing within loops (i.e., Ld(c.oj) = 0) get canceled out.

EF (C ′, c) = E¬L(C ′, c) + EL(C ′, c) (3)

The first factor of each summation is originated from the energy profile created555

in Phase I (i.e., ei and ej) while the second factor comes from data collected
in Phase II (i.e., NL and Ld).

CT+ makes its recommendation based on the energy factors of the collec-
tion implementations. It provides as output an ordered list of collection im-
plementations with better energy footprint than the original collection. Once560

the implementation is chosen, CT+ can automatically refactor the applica-
tion, within the context of the recommendation, to use the first element of the
ordered list.

Implementation. To collect the energy consumption of the different devices,
two profilers were created, one for the desktop enviroment and one for the565

mobile enviroment.
The Desktop Profiler is a simple Java program that uses the jRAPL (Liu

et al., 2015) library to measure energy consumption on desktop applications.
It works on Intel architectures (starting with Sandy Bridge, released in 2011).
The Mobile Energy Profiler comprises two subsystems: an Android app,570

responsible for executing the micro-benchmarks for each operation of each col-
lection implementation, and a dashboard application, responsible for collecting
and storing the produced data. We used the Android Power Profiler to mea-
sure energy consumption on the mobile applications. That limits our profiler
implementation to only work on Android devices with version 5 (released in575

2014) or later.
In both environments, the whole application energy consumption data is

collected. That means that we analyze how much energy was consumed by the
entire application during its execution while running different collection im-
plementations. On mobile devices, the Android Power Profile is used to isolate580

the energy consumption of the application. On desktop devices, RAPL uses
machine specific registers (MSR) to read the stored the energy consumption.
The energy cost of an operation is calculated using the difference between the
energy data on the register before and after it’s execution. jRAPL includes
the execution cost of the underlying system.585

The analysis and recommendation aspects of CT+ are based on WALA8,
a static analysis library developed by IBM. Since a collection may be thread-
safe or not, we employ WALA’s built-in type inference and points-to analysis
to discover the concrete types of objects, making it possible to recommend
collections satisfying the same constraints of thread-safety. This is also useful590

8 WALA website: http://wala.sourceforge.net/wiki/index.php/Main_Page

http://wala.sourceforge.net/wiki/index.php/Main_Page
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to support recommendations that account for collection objects being passed
as method arguments.

The whole CT+ project was developed in Java and has 23kLoc, comprising
two energy profilers, the analysis tool, the recommendation tool, and the aux-
iliary dashboard application for mobile experiments. The individual link for595

the repositories can be found at https://energycollections.github.io/.
To help developers and researchers, we also made available in our website a
cookbook guiding the developer to use it together with DaCapo.

6 Evaluation

In this section, we present the evaluation of the proposed approach. We ap-600

plied CT+ to a number of software systems, running on multiple execution
environments. The main objective of this evaluation is to compare the energy
consumption of the original versions of these systems with modified versions
where the recommendations made by CT+ were applied.

The evaluation is divided in two parts. In Section 6.1, we examine the605

efficiency of CT+’s recommendations when considering different execution en-
vironments. Then, in Section 6.2 we analyze the impact on energy efficiency
of using six different strategies to build energy profiles. For this second part,
we run all the experiments on a laptop.

When executing the benchmarks on the desktop devices, two different ver-610

sions of the DaCapo suite (Blackburn et al., 2006) were used: version 9.12 and
development version 19.07. This was the case because since January 15, 2020,
Maven’s Central Repository no longer supports communication over HTTP9.
Because of that, the older versions of DaCapo that required the usage of Java
Development Kit (JDK) up to version 6 do not work anymore. Using these615

older versions on newer devices can be challenging, as it requires in-depth
knowledge about DaCapo as well as rewriting potentially dozens of configu-
ration files. While executing version 19.07, JDK 8 was used. This newer JDK
version is supported by current versions of DaCapo and complies with Maven’s
new policy. The study presented in Section 6.1 uses version 9.12 of DaCapo620

for two devices and version 19.07 for one. The study presented in Section 6.2
uses exclusively the latest version.

Although execution time is not, in general, a proxy to energy consump-
tion (Hao et al., 2013; Li et al., 2014a; Pang et al., 2016; Chowdhury et al.,
2019), sometimes it can be a good approximation that is more convenient to625

use. To verify if there was a correlation between the execution time and the
energy consumption, we calculate the Spearman Correlation between execu-
tion time and energy consumption on the device used in Section 6.2, for the
systems where CT+ recommendations made a statistically significant impact
on the energy consumption. We found out that there was a statistically sig-630

nificant difference for 62.86% of the cases. This result suggests that analyzing

9 Maven’s new policy: https://central.sonatype.org/articles/2019/Apr/30/

http-access-to-repo1mavenorg-and-repomavenapacheorg-is-being-deprecated/

https://energycollections.github.io/
https://central.sonatype.org/articles/2019/Apr/30/http-access-to-repo1mavenorg-and-repomavenapacheorg-is-being-deprecated/
https://central.sonatype.org/articles/2019/Apr/30/http-access-to-repo1mavenorg-and-repomavenapacheorg-is-being-deprecated/
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Table 4 Machines used on the study about devices. Age shows how old the device was
when we executed the experiments (in years)

Device Alias RAM Chipset CPU (GHz) Battery Age

Desktop

Inspiron 7000 dell 16GB i7-7500U 2-core 2.70 N/A N/A
Server server 256GB Xeon E5-2660 20-core 2.2 N/A N/A
Asus X555U asus 8GB i5-6200U 2-core 2.80 N/A N/A

Mobile

Samsung J7 J7 1.5GB Exynos 7580 8-core 1.5 3000 mAh 3
Samsung S8 S8 4GB Exynos 8895 8-core 2.3’1.7 3000 mAh 1
Motorola G2 G2 1GB Snapdragon 400 4-core 1.2 2070 mAh 4
Samsung Tab4 Tab4 1.5GB Cortex-A7 4-core 1.2 4000 mAh 6

the energy consumption separately from execution time may still be the more
appropriate approach, since it was not a good approximation for energy in
more than 1/3 of the cases.

6.1 Analyzing different devices635

This section describes our experimental environment and results from the
study using CT+ to analyze the energy efficiency of Java collections on dif-
ferent devices. Overall, seven different devices were used in this experiment: a
high-end server, two notebooks, three smartphones, and a tablet.

The remainder of this section is organized as follows. Section 6.1.1 lists640

the research questions we aim to answer; Section 6.1.2 describes the method-
ology of this study, including the seven aforementioned devices and the target
software systems of the study; and Section 6.1.3 presents the results.

6.1.1 Research Questions

Among Java’s diverse collection implementations, developers may opt to use645

the most popular ones, even though popularity is not necessarily a proxy to
energy efficiency. To investigate this issue, we experimented with several col-
lections available in the JCF, as well as several alternative implementations.
Furthermore, our approach is based on the assumption that the energy pro-
files of the analyzed collections can be different depending on the underlying650

execution platform. This concern is particularly important due to the great
diversity of devices and operating system versions available for use. Based on
these considerations, we aim to answer the following research questions (RQs):

RQ1: To what extent can we improve the energy efficiency of an application
by statically replacing Java collection implementations?655

RQ2: Are the recommendations device-independent?



20 Wellington Oliveira et al.

6.1.2 Methodology

Our evaluation comprises two different execution environments, desktop and
mobile. These environments differ in terms of the available processing power
and memory, use of batteries, and measurement procedure.660

Desktop environment. CT+ was executed across three different machines
on the desktop environment, two notebooks and a high-end server. We labeled
the notebooks as dell (Dell Inspiron 7000) and asus (Asus X555U), and the
server as server. dell has an Intel Core i7-7500U processor with two 2.7GHz
cores with four threads, and 16GB of RAM. asus has an Intel Core i5-6200U665

processor with two 2.2GHz physical cores, with four threads and 8GB of RAM.
server has two-node Intel Xeon E5-2660 v2 processor with 20 2.20GHz phys-
ical cores (10 per node) and 20 “virtual” cores10, and 256GB of RAM. In the
experiments, we always execute benchmarks on dell and asus while they are
connected to the power outlet, since we are using it as a desktop machine.670

Mobile environment. We executed our tool on three smartphones and
a tablet: Samsung Galaxy J7 (J7), Samsung Galaxy S8 (S8), Motorola G2
(G2), and Samsung Galaxy Tab 4 (Tab4). Table 4 presents a summary of
the devices used in this study in both environments. All experiments were
executed while these mobile devices were in discharge mode (not connected675

to a power outlet), their more typical usage scenario. For all cases, battery
charges ranged between 100% and 80%. The latter restriction aims to reduce
influence of dynamic voltage and frequency scaling on the measurements. We
also report the age of each mobile device at the time the experiments were run,
since older batteries tend to exhibit more erratic discharge patterns (Jaeseong680

Lee et al., 2015). Section 8.1 discusses this further.

When creating the energy-profiles, we chose to use the same methodol-
ogy as previous work (Hasan et al., 2016; Oliveira et al., 2017), although we
leverage a larger number of collection implementations (Table 3). We executed
the micro-benchmarks, each one representing an operation-collection pair, and685

calculated their energy consumption. This procedure is repeated 30 times for
each micro-benchmark, for each machine. Before collecting the energy data
samples, we performed a warmup execution. In the warmup, we executed up
to 10% of our workload. By doing this, we minimized JIT noise on the mea-
surements (Barrett et al., 2017).690

As previously explained, for this experiment, two different versions of Da-
Capo were used. To execute the benchmarks on dell and server, we used
version 9.12, and on asus, we used version 19.07. Because different versions
of DaCapo were used, there are also two distinct versions of Tomcat. Da-
Capo version 9.12 uses Tomcat 6.0.20 (Tomcat v6 for short) while version695

19.07 uses Tomcat 9.0.2 (Tomcat v9 for short).

On dell, we analyzed seven desktop-based software systems: Barbecue,
Battlecry, JodaTime, Tomcat v6, Twfbplayer, Xalan, and Xisemele;
two mobile-based software systems: FastSearch and PasswordGen; and

10 Summary about hyper-threading: https://en.wikipedia.org/wiki/Hyper-threading

https://en.wikipedia.org/wiki/Hyper-threading
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Table 5 Software systems used on the study about devices and where they were executed.

Device Selected Software Systems

Environment: Desktop

dell
Tomcat v6 Xalan Barbecue Battlecry
JodaTime Twfbplayer Xisemele
Commons Math 3.4 Google Gson XStream

asus
Tomcat v9 Biojava Cassandra Graphchi
Kafka Zxing

server Tomcat v6 Xalan

Environment: Mobile

all
FastSearch PasswordGen
Commons Math 3.4 Google Gson XStream

three systems that work on both environments: Apache Commons Math700

3.4 (Commons Math for short), Google Gson, and XStream: These sys-
tems were employed in related work on energy profilling (Sahin et al., 2014;
Pinto et al., 2016; Hasan et al., 2016; Pereira et al., 2018), and their work-
loads are available for replication purposes. For server, we only ran Tomcat
v6 and Xalan since these are applications one would expect to execute on a705

high-end server machine.

For asus, we executed six systems: Biojava, Cassandra, Graphchi,
Kafka, Tomcat v9 and Zxing. Xalan was not executed on asus because
the project seems to be abandoned. As of April 2020, the last update on
GitHub’s page was on June 200111. Table 5 summarizes the software systems710

used in this study and the devices in which they were analyzed.

It is possible to tune the workload size on DaCapo’s benchmarks and dif-
ferent benchmarks have distinct options for their workloads. Tomcat is a
particular application among DaCapo as it has four different workload sizes
(small, default, large, and huge). Xalan has three different workload715

sizes (small, default, and large). The other applications used on this study
only have one (default). The advice of DaCapo developers is to use the
biggest option available12.

Each system has a specific workload and routine to follow with the objective
of exercising different aspects of their source code. As an example, executing720

Biojava creates 10 physico-chemical properties of different-sized protein se-
quences, Tomcat runs a number of web applications, and Graphchi uses
the Netflix Prize dataset (Bennett et al., 2007) to drive it’s engine. These rou-
tines are all selected and curated by DaCapo developers. For Tomcat v6 and
Xalan on the desktop development machines, we used the same workloads725

sizes (i.e., large) while on asus, Tomcat v9 was executed with two different

11 Xalan project: https://github.com/apache/xalan-java
12 DaCapo website: http://dacapobench.sourceforge.net/benchmarks.html

https://github.com/apache/xalan-java
http://dacapobench.sourceforge.net/benchmarks.html
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workloads sizes (i.e., large and huge). The number of threads also varied
between devices: forty on server and four on dell and asus.

The workloads of systems outside of DaCapo suite were done in more indi-
vidualized manner. For four systems (Barbecue, JodaTime, Twfbplayer,730

Xisemele) we used unitary tests, following the same methodology as previ-
ous work (Pereira et al., 2018). On Battlecry, we executed a class inside the
benchmark designed to test it. On Google Gson and XStream we tried to
exercise each Java primitive using methods inside those systems. With Apache
Commons Math 3.4, we executed multiple statistical functions from its API.735

As both PasswordGen and FastSearch are utility programs that work like
functions, their workloads consisted of executing their main methods (e.g.,
generating passwords).

For Tomcat v6, we could not recommend any implementation from the
Eclipse Collections library. This happened because version 9.12 of DaCapo740

requires the use of Java Development Kit (JDK) up to version 6 to ensure
the correct operation of its benchmarks. Unfortunately, the current version
of Eclipse Collections is incompatible with JDK 6. For this particular bench-
mark, our tool still makes recommendations with JCF and Apache Commons
Collections.745

Different devices require different workloads to run for enough time for the
energy measurement to have expressive values. This adjustment was specially
important when running the mobile profiler. Whereas jRAPL (Liu et al., 2015)
is capable of code-level, fine-grained measurement, the Android battery dump
collects battery data at the process level. In order to mitigate potential im-750

precisions, we adjusted the mobile micro-benchmark executions to run for at
least 20 seconds.

For the experiments, we collected the results of 30 executions of each soft-
ware system. When experimenting with thread-safe collections, we used four
threads for each operation; with non thread-safe collections, only one thread755

was used. Since most of our samples are not normally distributed, based on
Shapiro-Wilk’s normality test (Shapiro and Wilf, 1965), we used the Wilcoxon-
Mann-Whitney test (Wilks, 2011) to test whether the difference in energy con-
sumption between the original and modified versions of each software system
is statistically significant. We did not remove any outliers. We also employed760

Cliff’s Delta (Cliff, 1993) as a measure of effect size. Wilcoxon-Mann-Whitney
test and Cliff’s Delta are non-parametric tests.

6.1.3 Study results

We present the results in terms of the desktop and mobile environments. For
each one, we first present the energy consumption results and then proceed765

to discuss the recommendations that were made for each software system. We
will only present the energy results, because as mentioned in Section 6.1.2
most executions had a designed workload based on the time necessary to exe-
cute them. The specific amount of time each system took to be executed can
be found at https://energycollections.github.io/. In this experiment,770

https://energycollections.github.io/
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Table 6 Results for the desktop environment. Energy results are red for the original versions
and green for the modified versions. Energy measured in Joules.

System Improvement p-value Mean(J) Stdev Effect Size

Development Machine: dell

Barbecue 4.38% 7.0−4 56.17 2.70
0.50

53.71 2.53

Battlecry 2.78% 1.5−3 67.95 2.67
0.48

66.06 3.18

Google Gson 0.72% 8.0−5 29.93 0.22
0.57

29.72 0.16

Commons Math 1.04% 6.3−12 48.93 0.29
0.90

48.43 0.15

JodaTime 6.66% < 2.2−16 123.02 2.42
0.94

114.83 3.50

Tomcat v6 3.96% < 2.2−16 32.77 1.02
0.86

31.47 0.41

Xalan 4.77% < 2.2−16 107.04 0.19
1

101.93 0.15

Xstream 2.52% 3.12−13 59.97 0.52
0.94

58.45 0.49

Development Machine: asus

Biojava 0.60% 2.20−16 193.69 0.11
1

192.53 0.17

Graphchi 10.17% 5.79−13 10.90 0.35
0.94

9.80 0.42

Tomcat v9-large 1.04% 2.53−3 74.93 1.37
0.31

74.16 1.78

Zxing 5.84% 2.20−16 85.82 0.36
1

80.80 0.41

Development Machine: server

Tomcat v6 4.12% < 2.2−16 89.21 2.99
0.66

85.54 2.37

Xalan 5.49% < 2.2−16 242.29 4.4
0.86

228.98 7.02

across all devices, a total of 831 recommendations were made.

Desktop environment. Table 6 summarizes the energy consumption for the
desktop environment. The most important column of the table is Improve-
ment, which shows how much more energy the original version consumed,
when compared to a modified version where CT+’s recommendations have775

been applied. A positive percentage in this column indicates that the modified
version consumes less energy than the original one.

The versions of all the software systems modified according to the recom-
mendations of CT+ consumed less energy than the original versions. For five
of them, twfbplayer and Xisemele on dell, Tomcat v9 using the huge780

workload, Kafka, and Cassandra on asus, the difference between original
and modified versions was not statistically significant. In the case of Tom-
cat v9 using the large workload, there was a significant difference with a
small effect size. Notwithstanding, for the remaining systems, the difference is
statistically significant and the effect size is large.785
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According to Romano et al. (2006), effect size as measured by Cliff’s Delta
has four different categories: large (≥ 0.474), medium (between 0.474 and
0.33), small (between 0.33 and 0.147), and negligible (≤ 0.147). For example,
on Xalan in the dell machine, the effect size was 1, which means that every
execution of the modified version exhibited lower energy consumption than790

every execution of the original version.
Among the software systems that only ran in the dell machine, Joda-

Time exhibited the greatest improvement, with the modified version con-
suming 6.66% less energy than the original one. To make it easier for the
reader to focus on the relevant data, this section focused on the results for795

which p − value < 0.05, thus indicating a statistically significant difference,
either positive or negative, between the original version and the modified
one. The data about the non statistically significant results can be found at
https://energycollections.github.io/.

The two software systems that were executed in the dell and server ma-800

chines, Xalan and Tomcat v6, exhibited positive results in both scenarios.
For Xalan, the modified version consumed less 4.77% and 5.49% energy than
the original version in the dell and server machines, respectively. For Tom-
cat v6, the differences were of 3.96% and 4.12%, respectively. We found that
systems running on server consumed more than twice the energy they con-805

sumed on dell, for the same workload. This can be justified in terms of their
differences in processing power. Notwithstanding, the results were consistent
across the two machines.

Meanwhile, Tomcat v9 exhibited a different behavior on asus. Using the
workload size huge, the recommendations made by CT+ did not result in810

energy reduction. Nevertheless, while using the same workload as in dell and
server, there was a reduction of 1.04%, an improvement that represents less
than 25% the improvement made on the other two devices. Since on asus we
executed a newer version of Tomcat, smaller improvements were expected,
since developers behind the newer versions of Tomcat are likely to be more815

mindful of the collection implementations being used.
For all the other systems executed on asus, CT+ recommendations resulted

in a reduction in energy consumption with a large effect size. In particular,
Graphchi was the system with the most significant reduction in energy con-
sumption among all systems across all desktop development machines (10.17%820

of improvement).
Tables 7, 8 and 9 summarize the recommendations for each application on

dell, asus, and server, respectively. The first column lists the names of the
target systems for the desktop environment. The second column presents the
names of collection implementations used in these systems, whereas the third825

column indicates the collection implementations that CT+ recommended using
instead. Finally, the fourth column displays the number of times CT+ recom-
mended the one in the third column as a replacement to the corresponding
collection implementation in the second column. Overall, on the desktop en-
vironment, CT+ made and applied 724 recommendations lead to statistically830

significant results.

https://energycollections.github.io/
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Table 7 Recommended collection implementations for the dell machine and how many
times they were recommended.

System Original Recommended # of times

Development Machine: dell

Barbecue
HashMap HashedMap 13
ArrayList FastList 8

Battlecry
LinkedList ArrayList 2
LinkedList FastList 2

Commons
Math

ArrayList FastList 112
HashSet UnifiedSet 6
HashMap HashedMap 9
HashMap UnifiedMap 3
ArrayList TreeList 3

Google
Gson

ArrayList FastList 12
HashMap HashedMap 3
ConcurrentHashMap ConcurrentHashMap(EC) 1

JodaTime
ArrayList FastList 8
HashMap HashedMap 7
ConcurrentHashMap ConcurrentHashMap(EC) 1

Tomcat v6

Hashtable ConcurrentHashMap 6
HashMap HashedMap 4
Hashtable StaticBucketMap 2
Vector Synchronized LinkedList 1

Xalan

Hashtable ConcurrentHashMap(EC) 48
ArrayList FastList 10
Vector Synchronized FastList 3
ArrayList NodeCachingLinkedList 1
HashMap HashedMap 1

Xstream

HashMap HashedMap 52
ArrayList FastList 21
HashSet UnifiedSet 12
HashMap UnifiedMap 7
LinkedList TreeList 1
ArrayList LinkedList 1
HashSet TreeSortedSet 1

In dell and server machines Xalan had a significant number of Hashtable
implementations changed to ConcurrentHashMap(EC) (48 and 49 times on
dell and server, respectively). For both machines, we can observe a trend
of recommendations to replace well-known collections from the JCF (Vector,835

ArrayList, HashMap) by alternatives from Eclipse Collections and Apache
Commons Collections. For the specific case of Xalan, among the 119 recom-
mendations across the two desktop machines, just three were for JCF collection
implementations.

Tomcat v6 recommendations differed across these two machines. On dell,840

the tool made thirteen recommendations, seven for collections from the JCF,
and six for collections from the Apache Commons Collections. On server,
there were 60 recommendations, 40 for Apache Commons Collections, and 20
for JCF collections. In particular, there were 68 recommendations to replace
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Table 8 Recommended collections for asus

System Original Recommended # of times

Development Machine: asus

Biojava

HashMap HashedMap 100
ArrayList FastList 37
LinkedList ArrayList 2
TreeSet TreeSortedSet 2
ArrayList NodeCachingLinkedList 1
HashSet UnifiedSet 1
Hashtable ConcurrentHashMap 1
Vector SynchronizedArrayList 1

Graphchi
HashMap HashedMap 3
ArrayList FastList 1

Tomcat v9

HashMap HashedMap 47
ArrayList FastList 9
ConcurrentHashMap ConcurrentHashMap(EC) 8
CopyOnWriteArrayList SynchronizedArrayList 8
ConcurrentHashMap SynchronizedHashMap 5
ConcurrentHashMap Hashtable 3
Hashtable ConcurrentHashMap(EC) 4
Hashtable SynchronizedHashMap 4
LinkedList TreeList 2
LinkedList FastList 1
TreeSet TreeSortedSet 1
Vector SynchronizedArrayList 1

Zxing
ArrayList FastList 3
HashMap HashedMap 2

Table 9 Recommended collection implementations for the server machine and how many
times they were recommended.

System Original Recommended # of times

Development Machine: server

Tomcat v6

HashMap HashedMap 39
Hashtable ConcurrentHashMap 16
LinkedList TreeList 2
LinkedList ArrayList 1
HashSet LinkedHashSet 1
Vector Synchronized ArrayList 1

Xalan

Hashtable ConcurrentHashMap(EC) 49
Vector Synchronized ArrayList 3
ArrayList TreeList 2
HashMap HashedMap 1
HashMap UnifiedMap 1

Hashtable, HashSet, or HashMap by more energy-efficient alternatives and no845

recommendation to use any of those. As pointed out in Table 1, these are
widely-used collections. We reiterate that Eclipse Collections could not be
recommended for Tomcat v6 (Section 6.1.2).

Tomcat v9 has a substantial number of modifications on asus, with a
total of 93 recommendations by CT+. For the sake of comparison, Tomcat850

v6 had 60 recommendations on server and only 13 on dell. Being two differ-
ent versions of Tomcat, differences in the implementations recommended by
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CT+ were expected. However, two cases show a contrast in this expectation:
Hashtable and HashMap when comparing asus and server. Hashtable was
changed 49 times on server (26% of the total recommendations for Tomcat855

v6) while it was only changed 8 times on asus (8.6% of the total for Tom-
cat v9), clearly showing a significant difference. On the other hand, the most
common recommendation for both asus and server was to replace HashMap

by HashedMap. That recommendation was made 47 times on asus and 39 for
server, representing 50% and 65% of all recommendations made for Tomcat860

on these devices. Although there are considerable difference between the two
Tomcat versions, it seems like, for several cases, changing HashMap for more
energy efficient implementation still is an effective recommendation.

Among all 724 recommendations made to desktop systems, 666 used al-
ternative implementations to JCF, 294 from Apache Commons and 372 from865

Eclipse Collections. Once again it is possible to observe a trend of replacing
well-known collections such as ArrayList, Hashtable, and HashMap by more
energy-efficient but less-known alternatives.

Mobile environment. Table 10 summarizes the results for the mobile envi-
ronment. Overall, CT+ made 107 recommendations among the analyzed de-870

vices with their effectiveness varying strongly. One of the mobile devices used
on our experiments (i.e., Tab4) did not present any statistically significant
difference between the original and the modified versions. A more thorough
discussion about this specific device can be found in Section 8.

The modified versions of PasswordGen on the S8 and J7 devices ex-875

hibited significant improvements: the modified versions consumed 4.49% and
14.78% less energy than the original ones, with a large effect size. However, G2
had no recommendations for this specific system (more on this on Section 7).

Google Gson exhibited a significant improvement of 4.79% on the J7,
with a medium effect size. Nonetheless, the recommendations of CT+ yielded880

a statistically significant but small 0.95% improvement on S8.

Commons Math had more inconsistent results. Although the modified
version consumed 10.16% less energy than the original version on S8, the
original versions consumed 1.2% and 0.33% less energy than the modified
ones on G2 and J7. Albeit small, these results are statistically significant and885

the effect size for both cases was negative (medium and large, respectively).
This intuitively means that it was more common for executions of the modified
versions to exhibit greater energy consumption.

Finally, FastSearch was arguably the most consistent of the software
systems on the mobile environment, in the sense that there was no practical890

difference between original and modified versions. For J7 and G2 the results
for the modified and original versions did not differ in a statistically signifi-
cant way. On the S8, albeit statistically significant, the difference was small
with the modified version consuming just 0.09% less than the original version.
These results suggest that (i) the energy consumption of different collection895

implementations varies considerably across mobile devices, and (ii) although
the results were not as strong as in the desktop environment, for most cases,
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Table 10 Results for the mobile environment. Energy results are red for the original versions
and green for the modified versions. Energy measured in Joules.

System Improvement p-value Mean(J) Stdev Effect Size

Device: S8

Commons Math 10.16% 1.25−8 92.06 2.59
0.86

82.70 9.61

FastSearch 0.09% 1.67−3 35.06 3.32
-0.47

35.03 1.78

Google Gson 0.95% 6.42−4 16.45 0.22
0.40

16.29 0.20

PasswordGen 4.49% 2.38−9 16.86 0.41
0.90

16.11 0.65

Device: J7

Commons Math -0.33% 2−4 23.82 2.33
-0.56

23.90 2.62

Google Gson 4.79% 3.2−3 13.78 1.59
0.44

13.12 2.67

PasswordGen 14.78% 6.44−9 12.83 0.90
0.87

10.94 0.76

Device: G2

Commons Math -1.20% 9.0−3 17.22 0.51
-0.41

17.42 0.14

the recommendations of CT+ either yielded an improvement or did not have
a strong impact on the energy consumption of the software systems.

Table 11 presents the recommendations that CT+ made for S8, J7, and900

G2. Commons Math running on the S8 has more recommendations for JCF
collection implementations than all the software systems we evaluated on the
dell machine combined. On the one hand, the only collection recommended
by CT+ that is not from the JCF for this software system is TreeList from
the Apache Commons Collections. On the other hand, it follows the pattern of905

recommending alternatives to widely popular collections, e.g., it recommends
the use of TreeList instead of ArrayList and LinkedHashMap in place of
HashMap. For the remaining systems, CT+ made few recommendations, 11
for Gson, 2 for PasswordGen, and 5 for FastSearch. Overall, the rec-
ommendations only produced a large effect size for Commons Math and910

PasswordGen. Furthermore, these were the only systems that could achieve
energy savings greater than 1% in the S8.

Among the 22 recommendations of Commons Math on J7, 14 were for
Eclipse Collections, and eight were for Apache Commons Collections. In all
these cases, CT+ recommended that developers replace ArrayList with an915

alternative implementation. For this specific context, the recommendations
did not yield energy savings. CT+ also recommended replacing ArrayList

by alternatives in the case of Gson and PasswordGen. These substitutions
yielded considerable energy savings. The G2 differed from the others in this
study in the sense that only one of the software systems exhibited signifi-920

cant differences between the original and modified versions. Notwithstanding,
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Table 11 Recommended collection implementations for S8, J7, and G2 and how many
times they were recommended.

System Original Recommended # of times

Device: S8

Commons
Math

ArrayList TreeList 8
HashMap LinkedHashMap 7
HashSet LinkedHashSet 6
TreeSet LinkedHashSet 2
TreeMap LinkedHashMap 2
ArrayList LinkedList 1

Google Gson

ArrayList FastList 6
HashMap LinkedHashMap 3
ArrayList TreeList 1
ConcurrentHashMap Synch LinkedHashMap 1

PasswordGen ArrayList FastList 2

FastSearch
ArrayList FastList 4
HashMap HashedMap 1

Device: J7

Commons
Math

ArrayList FastList 14
ArrayList NodeCachingLinkedList 5
ArrayList TreeList 3

Google Gson
ArrayList FastList 7
ArrayList NodeCachingLinkedList 2

PasswordGen ArrayList FastList 5

Device: G2

Commons
Math

HashMap LinkedHashMap 12
ArrayList FastList 8
ArrayList TreeList 5
CopyOnWriteArrayList Vector 1
ArrayList LinkedList 1

the trend of CT+ recommending less popular collections as replacements for
widely-used ones such as ArrayList and HashMap can still be observed.

6.2 Analyzing different profiles

This section describes our experimental environment and results from a study925

analyzing different energy profiles. Each profile was created simulating a dif-
ferent workload size, in a way to try to analyze how they can affect the energy
consumption of Java collections. For this study, only asus was used and all the
target systems come from the most recent version of the DaCapo benchmark
suite, that is, the developer branch of the version 19.07.930

The following sections are organized as follows. Section 6.2.1 lists the re-
search questions this study aims to answer; Section 6.2.2 explains the method-
ology of this study; and Section 6.2.3 presents the results of our experiments.
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6.2.1 Research Questions

Following the study on different devices, an open question remained about935

how changing the energy profile on the same device could impact the recom-
mendations made by CT+. In the previous study, every device had a single
energy profile because the time required to create different profiles can be
steep. Section 7 discusses the cost of creating energy profiles in more depth. In
the follow-up study described in this section, six different profiles were used on940

the same device. These profiles were built by altering configurations of CT+
during Phase I of the proposed approach (Section 5). We aim to investigate
whether the resulting profiles have an impact on the recommendations made
by CT+ and the energy efficiency of the target systems after applying these
recommendations.945

Based on these considerations, with aiming to answer the following research
questions (RQs):

RQ3: How much does the workload size impact the energy efficiency of a Java
collection implementation?

RQ4: Are the recommendations profile-independent?950

6.2.2 Methodology

Through the following experiment, a single device was used, asus, described
in detail on Table 4. Six target systems present in DaCapo 19.07 were used,
that is: Biojava, Cassandra, Graphchi, Kafka, Tomcat v9 and Zxing.
These systems were executed using JDK 8.955

To explore the impact of different energy profiles on the energy-efficiency
of Java collection implementations, six energy profiles were created for asus,
namely N1, N2, N4, N8, N16, and N32. Starting with N1 (the profile used on
Section 6.1), created using a specific load size for each API i.e., 15,000 for
Lists, 18,750 for Sets, and 50,000 for Maps. We then proceeded to multiplying960

this load size by a factor of two and then used it to create a new profile,
with N2 having two times the load size of N1, N4 having four times, until the
maximum of 32 times the load size of N1 with N32. These profiles were created
to simulate different workload sizes a collection may face, with the smaller
ones representing lightweight applications that do not depend too much on965

collections and the bigger ones representing data-structure heavy applications
that make more intensive usage of collections.

Load sizes smaller than N1 made it unreliable to sample the energy con-
sumption for some of the faster operations, such as removing from the tail of
a LinkedList. The values of N1 we employed were the lowest loads where it970

was possible to perform energy measurement, i.e., the results were consistently
above zero, with a stable standard deviation, i.e., increasing the load size did
not lower it. This phenomenon, in which RAPL is unable to reliably mea-
sure energy consumption for small segments of program execution, has been
previously reported (Hähnel et al., 2012).975
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For the experiments, we collected the data from 30 executions of each target
system, considering the original and all six modified versions. Each instance
was executed in a clean machine state, that is, we restarted the notebook to
make sure there were no residual traces from the previous execution. All exe-
cutions were made in Ubuntu 19.04, booting without a graphic user interface.980

When experimenting with thread-safe collections, we used four threads for
each operation; with non thread-safe collections, only one thread was used.

6.2.3 Study Results

This section first presents the energy consumption results for the original and
modified versions. It then proceeds to discuss the recommendations made for985

each target system when considering the three different profiles. The specific
amount of time each system took to finish, the energy consumed, and the
source code of the modified applications can be found at
https://energycollections.github.io/. In this experiment, considering
all six profiles, CT+ made a total of 1711 recommendations.990

Figure 2 summarizes the energy consumption of all software systems exe-
cuted on asus in which CT+ made statistically significant recommendations,
with the exception of Tomcat v9-huge. Out of the six target systems, three
were more susceptible to improvements, with high effect size and low p-value
across all profiles: Biojava, Graphchi, and Zxing. For two applications,995

Cassandra and Kafka, CT+ was not able to make any impactful recom-
mendations on any of the six different profiles. For all the scenarios involving
these applications, the energy consumption of the original and modified ver-
sions did not differ significantly. As a consequence, we do not report the results
for Cassandra and Kafka in the remainder of this section. Instead, we focus1000

on statistically significant results. Tomcat v9 had mixed results, presenting
an energy reduction in all profile sizes for the workload large, usually with a
small effect size. For the workload size huge, Tomcat v9 presented a reduc-
tion in energy consumption of 0.36% only when using N32 (with a medium
effect).1005

Among the profiles, there was no overall winner. No profile presented the
best results among all different software systems and no profile dominated
another one, i.e., for every profile, if a target system had lower energy con-
sumption under profile p1 than profile p2 , there was some other target system
that consumed less under profile p2. Tomcat v9, on both workloads sizes,1010

consumed less energy using the recommendations made using N32; Graphchi
using N2; Zxing using N1; and Biojava using N8. When looking at the profile
sizes, it’s possible to have a glimpse of a trend of some systems performing bet-
ter for smaller profiles (the case of Graphchi) and others performing better
for bigger ones (such as Biojava and Tomcat v9).1015

Table 12 summarises the data about the recommendations made across all
different profiles. The total number of implementation changes differs signif-
icantly on each profile,with N4 having the most with 456 recommendations
and N16 having the least, with 82. Most of these recommendations changed

https://energycollections.github.io/
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Fig. 2 Percentage of Energy saved by CT+ among the different software systems.

Table 12 Source from the recommendations made to asus, sorted by the profile size. The
approximated percentage of the total is show between parenthesis.

Sources

Profiles Total Java Collections Apache Collections Eclipse Collections

N1 247 26 (10%) 154 (63%) 67 (27%)
N2 352 19a (5%) 292 (83%) 41 (12%)
N4 456 7a (2%) 116 (25%) 333 (73%)
N8 173 38 (22%) 82 (47%) 53 (31%)
N16 82 40 (49%) 25 (30%) 17 (21%)
N32 360 41 (11%) 125 (34%) 235 (65%)

an implementation from JCF to an alternative collection implementation from1020

Eclipse Collections or Apache Commons Collections. Up to 98% (in the case
of N4) of the collections recommended were from alternative sources. On the
other hand, N16 had the greater number of recommendations within the JCF,
for a total of 49%.

Tables 8, 13, 14, 15, 16, and 17 show the specific recommended collections1025

for asus among the six different profiles. CT+ often recommended alterna-
tives to ArrayList across all devices, for a total of 849 implementations of
ArrayList being changed by CT+, representing 49.6% of all modifications
made across all profiles. That is even clearer for two specific profiles, N2 and N4,
having 76.7% and 64.2% respectively of all their modifications being changes1030

from ArrayList. On the other hand, N16 had only two ArrayList modifica-
tions, representing a total of 2.4% of all modifications made on this profile.
Surprisingly, that was not the case for N32, which had 210 ArrayList imple-
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mentations being modified, 52.3% of the total modifications of this profile.
The second and third most changed List implementations across all profile1035

sizes were CopyOnWriteArrayList and LinkedList, with 47 and 30 changes
respectively.

Biojava showed a special behavior when compared with the other sys-
tems. For N4, CT+ recommended 291 changes to Biojava while for N16 the
number of recommendations was only 28, less than 10% the recommenda-1040

tions made for N4. Even so, N16 saved more energy than N4 (1.12% and 0.4%,
respectively), although in both cases the savings were modest. Not only the
recommendations between profiles differ in quantity, but also which collections
were recommended by CT+. Among all applications tested on asus, on pro-
files N2 and N4 there was a large number of list implementations that were1045

changed: 283 and 309, respectively. Meanwhile, on profile N16, that number
was much smaller: just 15 changes.

Table 13 Recommended collections for the asus on N2

System Original Recommended # of times

Profile: N2

BioJava

ArrayList NodeCachingLinkedList 179
HashSet UnifiedSet 18
ArrayList FastList 6
HashMap HashedMap 5
LinkedList NodeCachingLinkedList 2
Hashtable ConcurrentHashMap 1

Graphchi
ArrayList NodeCachingLinkedList 4
HashSet UnifiedSet 1

Tomcat

ArrayList NodeCachingLinkedList 64
HashMap HashedMap 18
HashSet UnifiedSet 10
Hashtable ConcurrentHashMap 9
CopyOnWriteArrayList SynchronizedArrayList 6
ConcurrentHashMap ConcurrentHashMap(EC) 5
CopyOnWriteArrayList Vector 2
LinkedList TreeList 2
ConcurrentHashMap SynchronizedHashMap 1
LinkedList NodeCachingLinkedList 1
TreeSet TreeSortedSet 1

Zxing
ArrayList NodeCachingLinkedList 16
ArrayList TreeList 1
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Table 14 Recommended collections for the asus on N4

System Original Recommended # of times

Profile: N4

BioJava

ArrayList FastList 214
HashMap HashedMap 70
LinkedList FastList 2
TreeSet TreeSortedSet 2
ArrayList NodeCachingLinkedList 1
Hashtable ConcurrentHashMap 1
Vector SynchronizedFastList 1

Graphchi ArrayList FastList 7

Tomcat

ArrayList FastList 69
HashMap HashedMap 43
ConcurrentHashMap ConcurrentHashMap(EC) 16
Hashtable ConcurrentHashMap(EC) 13
CopyOnWriteArrayList SynchronizedArrayList 6
CopyOnWriteArrayList SynchronizedFastList 2
LinkedList TreeList 2
Vector SynchronizedFastList 2
HashSet UnifiedSet 1
LinkedList FastList 1
TreeSet TreeSortedSet 1

Zxing ArrayList FastList 2

Table 15 Recommended collections for the asus on N8

System Original Recommended # of times

Profile: N8

Biojava

HashMap HashedMap 45
HashSet LinkedHashSet 18
ArrayList FastList 15
LinkedList ArrayList 2
ArrayList LinkedList 1
HashTable ConcurrentHashMap(EC) 1

Graphchi
ArrayList FastList 2
HashSet LinkedHashSet 1

Tomcat

HashMap HashedMap 34
ConcurrentHashMap ConcurrentHashMap(EC) 19
HashSet LinkedHashSet 9
Hashtable ConcurrentHashMap(EC) 9
CopyOnWriteArrayList SynchronizedArrayList 4
CopyOnWriteArrayList SynchronizedFastList 2
CopyOnWriteArrayList Vector 2
LinkedList TreeList 2
ArrayList FastList 1
HashSet UnifiedSet 1
LinkedList ArrayList 1

Zxing
ArrayList FastList 3
ArrayList TreeList 1
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Table 16 Recommended collections for the asus on N16

System Original Recommended # of times

Profile: N16

Biojava

HashSet LinkedHashSet 18
HashMap HashedMap 5
LinkedList ArrayList 2
ArrayList NodeCachingLinkedList 1
Hashtable ConcurrentHashMap(EC) 1
TreeSet TreeSortedSet 1

Graphchi HashSet LinkedHashSet 1

Tomcat

HashMap HashedMap 16
HashSet LinkedHashSet 10
Hashtable ConcurrentHashMap(EC) 9
ConcurrentHashMap ConcurrentHashMap(EC) 6
CopyOnWriteArrayList SynchronizedArrayList 6
CopyOnWriteArrayList Vector 2
LinkedList TreeList 2
LinkedList ArrayList 1

Zxing ArrayList TreeList 1

Table 17 Recommended collections for the asus on N32

System Original Recommended # of times

Profile: N32

Biojava

ArrayList FastList 145
HashMap HashedMap 80
HashSet LinkedHashSet 18
HashMap UnifiedMap 3
LinkedList FastList 2
ArrayList LinkedList 1
Hashtable ConcurrentHashMap 1

Graphchi
ArrayList FastList 2
HashSet LinkedHashSet 1
HashMap HashedMap 1

Tomcat

ArrayList FastList 48
HashMap HashedMap 40
ConcurrentHashMap ConcurrentHashMap(EC) 14
HashSet LinkedHashSet 10
Hashtable ConcurrentHashMap(EC) 7
CopyOnWriteArrayList SynchronizedLinkedList 3
CopyOnWriteArrayList SynchronizedArrayList 2
CopyOnWriteArrayList Vector 2
Hashtable ConcurrentHashMap 2
LinkedList TreeList 2
HashMap UnifiedMap 1
LinkedList ArrayList 1

Zxing
ArrayList FastList 13
ArrayList NodeCachingLinkedList 1
HashMap HashedMap 1
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When analyzing uses of Set implementations, 35.4% of the recommen-
dations made by CT+ for the N16 profile suggested using some alternative
to HashSet. On the other hand, for N1 and N4, only 0.4% and 0.2% of the rec-1050

ommendations involved this collection implementation, respectively. Lastly,
HashMap was the Map implementation most often recommended against by
CT+. This implementation was frequently changed across all profiles, up to
61.54% on N1, with the solo exception being N2, where its changes represented
only 6.53% of the total recommendations. Across all profiles, from all recom-1055

mendations to change from HashMap, 99.2% were to use HashedMap. Only on
4 cases when analyzing N32, CT+ recommended using UnifiedMap as a re-
placement for HashMap. This suggests that developers should consider using
HashedMap as an alternative to HashMap.

As shown in Section 6.1 and in other papers (Pinto et al., 2014b, 2016),1060

Hashtable has poor performance and energy efficiency. Therefore, we expected
CT+ to make multiple recommendations of alternative collection implementa-
tions aiming to improve uses of Hashtable. Surprisingly, though, there were
only a few such recommendations. More specifically, CT+ recommended re-
placing uses of Hashtable 8 times for N1, 9 times for N2, N8, N16, N32, and1065

13 times to N4 when analyzing Tomcat v9 and a single case for each pro-
file for BioJava. An examination of the source code of the target systems
reveals that, differently from Tomcat v9, where there were 49 instances of
uses of Hashtable, the others either used it scarcely (2 cases for BioJava,
Cassandra, and Kafka) or did not use it at all (Graphchi and Zxing).1070

This decreased Hashtable usage in more modern software corroborates the
results from our queries on GitHub projects using Java collections, presented
in Table 1.

7 Discussion

This section discusses in more depth the results from the two studies presented1075

in Sections 6.1.3 and 6.2.3. This section is organized as follows. We start by
examining the implementations of JCF, Apache Collections, and Eclipse Col-
lections and how they interact during our experiments. We then proceed by
analyzing the energy consumption of the most popular implementations, an-
swering RQ1, and discussing the importance of analyzing different devices1080

when running experiments on energy efficiency, answering RQ2. We also dis-
cuss how the optimization of the collection implementations change based
on the expected workload, answering RQ3 and the impact that different en-
ergy profiles have on the expected consumption on an optimized application,
answering RQ4. Finally, we illustrate how some implementations dominate1085

others and explain the employed procedure to optimize the creation of energy
profiles.

JCF recommendations. The majority of the CT+ recommendations were
for collection implementations not in the JCF. Considering only the statisti-
cally significant occurrences, out of 724 recommendations made in the desktop1090
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environment in the first study, only 58 suggested the use of JCF collections (8%
of the recommendations). When analyzing the data on the study about dif-
ferent energy profiles, out of 1711 recommendations, 171 were originated from
JCF (10% of the recommendations). This means that overall, in the desktop
environment, across all 2188 recommendations made, only 9.2% of the CT+1095

recommendations suggested the use of JCF implementations. The contrast is
less stark in the mobile environment, where CT+ recommended JCF collection
implementations in one-third of the cases (36 out of 107 recommendations).
However it is worth noting that none of the cases where energy was saved on J7
used JCF implementations. If we aggregate over all of these recommendations,1100

the JCF was recommended in just 10.4% of the cases.

Popular collections and energy efficiency. Our results indicate that
there seem to be more energy-efficient alternatives to some popular collection
implementations. In the desktop environment, CT+ recommended replacing
184 uses of Hashtable, 654 uses of HashMap, 138 uses of HashSet, 38 uses1105

of LinkedList, and 1027 uses of ArrayList. Overall, those recommendations
amount to 93.2% of all the recommendations in cases where there was a sta-
tistically significant difference in energy consumption. This percentage is con-
sistent with the popularity of those JCF collections (Table 1); since they are
used often, there will be many recommendations to replace them with alterna-1110

tives. Some of these commonly used implementations were not recommended
by CT+, e.g., HashMap, and HashSet, while others were very rarely recom-
mended, such as LinkedList (3 times), Hashtable (3 times), and ArrayList

(12 times). Hashtable, in particular, replaced ConcurrentHashMap on N1. For
as much performance and scalability problems Hashtable may have, it seems1115

like it can still perform better than other implementations for a very small
number of elements.

Out of the 12 times ArrayList was recommended, all of them as a re-
placement for LinkedList, a collection that is not efficient for random ac-
cesses. These results, combined with the significant improvements in energy1120

efficiency that could be achieved by following CT+’s recommendations in the
desktop environment, suggest that these collections might not be good choices
in scenarios where energy efficiency has a high priority.

As pointed out previously, in the mobile environment CT+ recommended
the use of JCF collections more often. Nevertheless, a similar trend of mod-1125

ifying popular collections can be observed. CT+ suggested alternatives to
HashMap 23 times, to HashSet 6 times, and to ArrayList 72 times. That
amounts to 94.39% of all its recommendations. At the same time, not once
did it recommend the use of these collections.

Given the importance of the aforementioned collections, we conducted a1130

more in-depth investigation into why ArrayList was replaced an expressive
number of times and only rarely recommended. We focus on ArrayList be-
cause it is arguably the most popular collection implementation in the Java
language. Two factors help explain the lack of recommendations in its favor.
First, the most common operations in the software systems for list collections1135
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are List.insert(value) and List.iteration(random). ArrayList does not
perform these operations well on most devices. In particular, FastList was ex-
plicitly designed as an alternative to ArrayList that performs those operations
more efficiently, since it does not support concurrent modification exceptions.
As a consequence, FastList can “provide optimized internal iterators which1140

use direct access against the array of items.”13. This kind of direct access is
not allowed by ArrayList. Second, there are many cases where ArrayList

is the most efficient alternative, but it is already being used. That is what
occurred, for example, for FastSearch and PasswordGen in the G2. In other
words, due to the widespread use of this collection implementation, in most1145

cases where it would be the best option, it is already being employed, and thus
no benefits can be achieved.

Different devices matter. The recommendations and results varied heav-
ily across devices, even when executing the same application. Although for
some specific applications, such as FastSearch, our tool made similar rec-1150

ommendations across devices and those recommendations did not impact en-
ergy efficiency, for most software systems, different devices resulted in different
recommendations. For instance, CT+ recommended ten ArrayList instances
to be changed to FastList and one to NodeCachingLinkedList when an-
alyzing Xalan on dell. However, for the same system on server, it made1155

recommendations for only two instances of ArrayList and suggested the use
of TreeList. In both machines, energy consumption decreased.

In addition, the effectiveness of CT+’s recommendations for the same soft-
ware systems varied across machines. Xstream presents an interesting ex-
ample. The recommendations made by CT+ did not result in a version of1160

the software system that had a statistically significant difference in energy
consumption on mobile devices, even if the modified versions consumed less
energy. On the other hand, on dell, the energy consumption of the modi-
fied version exhibited a statistically significant difference (with a p-value of
3.12−13) when compared to the original version. Also, the effect was large1165

(0.94). This difference may be attributed to the number of implementation
changes as well as differences between devices. On dell, our tool suggested 95
modifications to Xstream while the mobile device with most changes, G2,
only had 41. Those changes also did not target the same implementations: On
dell, we replaced ArrayList by FastList 21 times and by LinkedList one1170

time. On G2, ArrayList was replaced by TreeList just three times. Those
devices had different energy profiles and by the number of changes, we noticed
that the implementations used on the mobile versions were already optimized
for that environment, which was not the case for the desktop environment.

For this topic, results from asus were not analyzed because they are not1175

comparable. The only target system used on it and on the other two desktop
devices, namely dell and server, was Tomcat, but with a different version.
Besides that, we used six different profiles on asus, producing different rec-

13 Available at: https://www.eclipse.org/collections/

https://www.eclipse.org/collections/
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ommendations, and making the comparison infeasible. The next sections will
give more details about our findings on the different profiles for asus.1180

The best implementation is workload dependent. With the experiments
on asus, we used six different profiles to try to simulate the different scenarios
that the application could be submitted to. The amount of energy saved on
different applications was heavily influenced by the profile being used, specially
in two cases: Graphchi, with 12.73% of energy was saved using N2 but only1185

2.64% using N32; and Biojava, with 1.34% of energy was saved using N8 but
only 0.40% using N4. These results indicate that, even though profile creation
is an application-independent step of the proposed approach, knowledge about
actual usage profiles can be leveraged to produce more useful profiles.

Recommendations applied to Tomcat v9 using the six different profiles1190

on the large workload resulted in a positive impact on energy efficiency with
statistical significance. On the other hand, for the huge workload, the results
did not have statistical significance for five profiles sizes (N1, N2, N4, N8, and
N16), having only a positive impact when using the biggest profile size, N32.
Comparing the recommendations made to Tomcat v9-huge using N32 (Table1195

17) and using the smaller sized profiles, such as N1 (Table 8) and N2 (Table
13), we can see that they differ greatly.

Although both large and huge were bigger than normal workload sizes,
the difference between these two was enough to make CT+ unable to recom-
mend better collections implementations to any of the profile sizes with the1200

only exception being N32.

Energy profiles also matter. As the profiles were created to represent
different scenarios, a different behavior was expected. In this topic, we take a
deeper look at the implementations recommended for these different profiles
on asus, in particular as replacements to uses of ArrayList and HashSet.1205

Across all profiles, 90.8% of list modifications were changes from ArrayList

to another implementation. In particular, FastList was the implementation
of choice by CT+ in 68% of the cases (577 cases out of 849). On the other
hand, out of 270 changes on N2 from ArrayList, only 6 were to FastList.
On this particular profile size, the most often used implementation to replace1210

ArrayList was NodeCachingLinkedList, with a total of with 263 changes.
The main reason behind the substantial difference in recommendations be-
tween the different profiles is the distinct operations used by each appli-
cation. Taking a deeper look at the behavior of those two collections, we
noticed that on N2, ArrayList has higher energy consumption in five out1215

of ten operations than FastList and NodeCachingLinkedList. When com-
paring between themselves, FastList and NodeCachingLinkedList had an
even number of operations where they performed better, five each. Even be-
ing the best replacement for ArrayList on every other profile size, for N2,
NodeCachingLinkedList exhibited better results than FastList.1220

The modifications from ArrayList on N2 were mostly focused on one ap-
plication: Biojava. On this system, two operations were heavily used and
had a greater impact on CT+ recommendations: List.insert(value) and
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List.iteration(iterator). NodeCachingLinkedList (on profile N2) con-
sumed less energy than ArrayList for these two operations. In contrast, when1225

looking at profile N8 and N16, ArrayList did not have a single implementation
that had lower consumption for these two operations. These two are precisely
the profiles with the smaller number of modifications from ArrayList: 23
changes on N8 and only 2 on N16.

HashSet had a total of 118 modifications across the different profiles on1230

asus. Most of these changes replaced it by one of two particular implementa-
tions: LinkedHashSet (72%) and UnifiedSet (26%). These changes were not
equally divided among the profiles. For smaller profiles, CT+ recommended
UnifiedSet to replace HashSet on every change on N1, N2 and N4. For big-
ger profiles, CT+ recommended LinkedHashSet to replace HashSet on every1235

change on N16 and N32, and all but one on N8 (the only exception being a
recommendation to use UnifiedSet).

A change in the expected scenario (represented here by a change in profile
sizes) had a sizable impact on the recommended implementations and in the
energy efficiency results. As researchers, we could only faintly foresee what1240

kind of scenario would better represent a normal usage pattern for a specific
application. On the other hand, developers would have an easier time figuring
it out how much work the most important parts of the application are expected
to have. This kind of information could be very valuable for the creation of the
energy profile and could improve even more the efficiency of CT+, allowing us1245

to combine different profiles to make the recommendations.

Dominance among collection implementations. Out of the 39 possible
implementations available to CT+ only 20 were recommended. When trying to
understand this behavior, we observed that some collection implementations
consistently dominate (Peterson, 2009) others. Given two collection imple-1250

mentations C1 = (N,T, S, o1, o2, ..., on) and C2 = (N ′, T, S, o1, o2, ..., on) with
energy profiles (T, env, e1, e2, ..., en) and (T, env, e′1, e

′
2, ..., e

′
n), respectively, we

say that C1 dominates C2 if ei < e′i for all 1 ≤ i ≤ n. Since every dominated
collection implementation has a dominating alternative collection implemen-
tation, it will never be recommended by CT+.1255

Figure 3 depicts dominance relations for the thread-safe Map implemen-
tations on the server machine. Based on this figure, only four thread-safe
Map implementations can be recommended by CT+ on the server machine:
ConcurrentHashMap, ConcurrentHashMap(EC), and the Synchronized ver-
sions of LinkedHashMap and UnifiedMap. These are the collections that are1260

not dominated by any other collection. Furthermore, as the figure shows,
Hashtable is dominated by ConcurrentHashMap(EC), even though Hashtable

itself also dominates Synchronized TreeMap. Therefore, in server, instances
of Synchronized TreeMap and Hashtable are never recommended, in favor
of ConcurrentHashMap(EC). More specifically, we observed that Hashtable1265

was dominated on dell, server, and on every mobile device that we exper-
imented with. This result, combined with the well-known scalability limita-
tions of this collection (Pinto et al., 2016), and the plethora of more effi-
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Concurrent 
SkipListMap

Synchronized 
TreeMap

Synchronized 
HashMap Hashtable

Synchronized 
LinkedHashMap

StaticBucketMap

Concurrent 
HashMap(EC)

Concurrent 
HashMap

Synchronized 
UnifiedMap

Fig. 3 Order of dominance between the thread-safe Map implementations on server. Ar-
rows point from the dominating collection to the dominated one.

cient alternatives suggest that it should rarely be used in practice. Imple-
mentations such as ConcurrentSkipListSet, Synchronized TreeMap, and1270

Synchronized UnifiedMap, were dominated in three devices.

Among all implementations, ConcurrentHashMap shows a particular be-
havior that is worth mentioning. That implementation was replaced by more
efficient alternatives 79 times on the desktop environment, 70 out of 79 cases
for the Eclipse Collections version (i.e., ConcurrentHashMap(EC)). Even so,1275

ConcurrentHashMap was also recommended 37 times, every single time replac-
ing Hashtable. This illustrates that even if some implementation is usually
recommended over another one (e.g., ConcurrentHashMap(EC) recommenda-
tions over ConcurrentHashMap), as long as this implementation is not domi-
nated, there will be cases where the generally worse implementation may still1280

perform better.

Scaling up profile creation. We used two different profilers in this work,
one for mobile devices and one for desktop devices, as described in Section 5.
During our experiments, we noticed that some factors could make it unfeasible
to create profiles at a larger scale. If left unchecked, the original process of1285

creating the energy profiles can take a long time, i.e., hours for desktop devices
and days for mobile devices. This is due to the enormous variation in the
execution time of operations for different collections.

On the one hand, some operations are so fast that it is necessary to increase
the number of times they are executed during profiling in order to obtain reli-1290

able energy measurements, e.g., insertions at the beginning of a LinkedList.
On the other hand, some operations are so slow that we need to reduce the
number of executions, e.g., updates to CopyOnWriteArrayList when the list
has many elements. For example, when creating the profile N16, the operation
insert(start) on LinkedList would be 554 times faster than on ArrayList1295

while insert(value) would be 934 times slower on CopyOnWriteArrayList

than on Vector. To address this issue, we employed two strategies, described
below.
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– Excluding collections that were dominated. First we executed each opera-
tion for each implementation three times, measured and collected the en-1300

ergy consumption of those operations. In the case where we found one col-
lection implementation exhibiting domination over another, the dominated
collection was not included as an option for recommendation. As an exam-
ple, when creating N2 on asus, there were 13 initial possibilities for Sets.
Out of that initial pool, four implementations, that is, LinkedHashSet, and1305

the Synchronized versions of UnifiedSet, TreeSet, and LinkedHashSet,
were excluded because they were dominated by other implementations. In
this case, these techniques represent savings of at least 30% of the time
to generate the Set portion of the profile N2, potentially more. Because
the dominated implementations would never be recommended by CT+,1310

they can be safely removed from our recommendation pool without reduc-
ing CT+ capacity of improving the energy efficiency of the application.

– Using timeouts. Because of the long time it took to execute some operations
on mobile devices, e.g., insertions on instances of CopyOnWriteArrayList,
very expensive operations were discarded based on the time it took for1315

them to complete. To define which operations should not be measured, a
single warmup session was executed, collecting the energy consumption for
each operation on each collection implementation. Each operation imple-
mentation was executed in sequence and the values for the fastest ones
were stored, separated by thread-safety and API (e.g., insert(start) for1320

thread-safe Lists). Because some of those operations could take a long
time to finish, we established a threshold on the number of times that an
operation could be slower than the fastest ine. Any operation slower than
that was stopped in the middle of its execution14.
We assumed that such a large difference is unlikely to stem from random1325

performance fluctuations. Since CT+ needs estimated energy consumption
measurements per operation to recommend the implementations, we used
the energy consumed by the fastest operation multiplied by our threshold.
This approach loses some energy consumption information during profile
construction. On the one hand, this means that sub-optimal collection im-1330

plementations may end up being recommended by CT+ because we end up
underestimating the cost of the very expensive operations. On the other
hand, in our experiments, we have observed that scenarios where such col-
lection implementations would thrive, e.g., CopyOnWriteArrayList in a
scenario where a large collection is subject to many concurrent accesses1335

almost exclusively for reading, were rare. As a consequence, collections
in which most of the operations were expensive almost never got recom-
mended.

14 On our experiments, the threshold was 100 times slower
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8 Threats to Validity

Although we conducted experiments in a number of different devices, we did1340

not use all possible devices available, which is far from feasible. We selected
representative devices with very different hardware characteristics (from a mo-
bile phone with 1.5GB of RAM to a server with 256GB of RAM). Second, our
findings cannot be generalized to other software applications that use col-
lections. We then chose representative software systems from very different1345

domains (e.g., a XML serializer, a webserver, and mobile apps). Still, the cho-
sen software systems are non-trivial, e.g., Tomcat has more than 433k lines
of code and has been used in multiple studies (Pinto et al., 2016; Hasan et al.,
2016; Pereira et al., 2018).

Even though we observed an overall good energy savings with our tool, for1350

some software systems it was not possible to reduce the energy consumption
reported in other studies. We hypothesize this happens due to the care we took
of preventing thread-safety problems due to recommendations that ignore this
aspect. We checked that among the recommendations in the study of Pereira
et al. (2018) there were cases where a thread-safe collection was replaced by a1355

non-thread-safe one. Similarly, our tool does not guarantee thread-safety when
thread-safe collections are performing compounded operations (Lin and Dig,
2015) (e.g., verifying if an item is stored in a collection before adding it). In
other words, it does not break thread-safety requirements, but, at the same
time, it cannot guarantee thread-safety for non-thread-safe operations. The1360

software construct versions (such as libraries and applications) may influence
the recommendations made by CT+.

The Java Development Kit version may have a non-negligible influence on
our results. Through this article, JDK 6 was used for the study presented
in Section 6.1 and JDK 8 for Section 6.2. Other versions of Java may have1365

different implementations of the collections used on this article and this may
lead to different results. The configurations and source code are available at
https://energycollections.github.io/.

Another limitation of this work is the way loops are accounted for in Phase
II of the proposed approach (Section 5). Estimating loop counts is difficult in a1370

high-level programming language such as Java, where collections are allocated
dynamically, usually based on information from outside the system’s source
code (Rodrigues et al., 2014). On the one hand, the approach employed in
this work is very cheap and takes loop nesting into account. Nevertheless,
it is inherently imprecise; in extreme cases, it may consider that loops that1375

are executed millions of times have the same impact on energy consumption
as loops that execute just a dozen times. Even though these two situations
would be equivalent from an asymptotic perspective, they differ significantly
in practice. Exploring different approaches to account for loops, recursion, and
API functions that encapsulate repetition, e.g., map/reduce, is left for future1380

work.

The methodology used to collect energy consumption may have an impact
on the data presented in this study. The energy measurement was made at the

https://energycollections.github.io/
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application level for the mobile devices and at the system level for the desktop
devices. As explained in Sections 6.1.2 and 6.2.2, we mitigated the influence1385

of external factors by executing only the application under analysis on mo-
bile devices and executing our experiments on an operating system without a
graphic user interface. Nevertheless, the energy data presented in this paper
may differ from other devices or operating systems.

Finally, we did not perform experiments with actual developers, so it is1390

unclear whether developers would face any difficulties while using the tool or
whether they would find the recommendations useful.

8.1 Results without statistical significance.

For some applications, applying the recommendations made by CT+ to a tar-
get system did not yield a more energy efficient, at least not enough to exhibit1395

a statistically significant difference to the original version. That was the case
for two systems on Section 6.1 desktop environment (Xisemele and Twfb-
player) and also two on Section 6.2 (Cassandra and Kafka). On the mobile
environment there were four in this situation: Google Gson and Password-
Gen on G5; FastSearch on every device except S8; and Xstream on every1400

device. The only device where there was no statistically significant difference
in the energy consumption of the original and modified versions of the target
systems was Tab4.

Table 18 shows the results of the experiments on Tab4. Albeit 194 recom-
mendations were made on five different software systems for Tab4, none of1405

them had statistically significant results. Unlike other devices from our mobile
pool, Tab4 is a special device, being a tablet and not a smartphone. The idea
was to try to investigate a distinct type of device and see if the applications
running on it could also be optimized by CT+. Even though Table 18 sug-
gests that the CT+ recommendations yielded positive results for most of the1410

apps, the effect sizes were all small or negligible and there was no statistical
difference.

We hypothesize that the reason for this result was the very high standard
deviation present in the collected samples. Even though the standard devia-
tions we observed for mobile devices (Table 10) was in general much higher1415

than for the desktop devices (Table 6), they were even higher for Tab4. Con-
sidering the two versions of each of the five apps we have analyzed on Tab4,
only one version exhibited a standard deviation lower than 10% of the mean
energy consumption (the original Google Gson) and the worst-case scenario
reached more than 30% (the original PasswordGen), as shown in Table 18.1420

When investigating the reasons behind this result, we noticed that the
battery was discharging at an inconsistent rate, even when in an idle state. We
hypothesize that this inconsistency stems from the device’s age. For reference,
Table 4 shows the age of the devices when executed the experiments on them.
On older devices, the energy consumption difference between the original and1425

the modified version seems to be more indistinguishable, that is, the impact
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Table 18 Results for Tab4. Energy results are red for the original versions and green for
the modified versions. Energy measured in Joules.

System Improvement p-value Mean Stdev Effect Size

Device: Tab4

Commons Math 1.99% 0.39
23.62 3.31

0.10
23.04 4.47

Google Gson 1.58% 0.80
56.01 5.04

0.05
55.15 6.77

Xstream 6.16% 0.24
26.93 6.48

0.17
25.20 6.91

PasswordGen 6.23% 0.24
28.80 9.65

0.03
27.36 6.77

FastSearch 4.44% 0.80
50.11 7.34

0.27
47.08 7.49

made by optimizing the collections were not represented in the final energy
consumption. Although these experiments involved only 4 mobile devices, they
suggest that battery age can impact energy measurements. Since real-world
device usage involves both old and new devices, simply using newer devices is1430

not an appropriate solution. Instead, we recommend that future studies include
the age of the devices (or their batteries) when reporting experimental
results.

9 Conclusion

With this work, we present our vision of a general-purpose approach to aid1435

non-specialist developers to create energy-aware software. This vision was in-
stantiated within a tool to recommend energy-efficient collection implementa-
tions. We evaluated two different experiments studies, analyzing the influence
of devices and energy profiles on software systems’ energy-efficiency using Java
collections. Overall, we executed our tool in seven different devices running1440

seventeen different software systems (two mobile, twelve desktop, and three
on both environments), and six other energy profiles for a total of 64 software
versions.

Although some cases, the recommendations provided did not have a direct
impact on energy consumption, our tool was able to reduce energy consump-1445

tion of some applications up to 16.34%. Overall, CT+ made a total of 2295
recommendations that lead to a statistically significant impact on the energy-
efficiency.

Our results suggest that some of the most popular collections implementa-
tions (e.g., ArrayList, HashMap, HashSet, and Hashtable) are often not the1450

most energy-efficient ones; that implementations have different energy behav-
ior while dealing with different quantity of data and developers should try to
choose a collection based on the expected work; and that the energy-efficiency
of the collections changed based on the devices they were running. As future
work, we plan to submit patches to the projects applying the modifications1455



46 Wellington Oliveira et al.

made by CT+. We also plan to use our tool in a real-world setting to under-
stand whether developers could, indeed, take advantage of it.
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