
Data-Oriented Characterization of Application-Level
Energy Optimization

Kenan Liu1, Gustavo Pinto2, and Yu David Liu1

1 State University of New York, Binghamton, NY, US
{kliu20, davidL}@cs.binghamton.edu

2 Federal University of Pernambuco, Recife, PE, Brazil
ghlp@cin.ufpe.br

Abstract. Empowering application programmers to make energy-aware decisions
is a critical dimension in improving energy efficiency of computer systems. Despite
the growing interest in designing software development processes, frameworks, and
programming models to facilitate application-level energy management, little is
empirically known on how application-level features impact energy management. In
this paper, we illuminate the optimization space of application-level energy man-
agement, from a novel data-oriented perspective. First, we study the varying energy
impacts of alternative data management choices by programmers, such as data ac-
cess patterns, data precision choices, and data organization. Second, we attempt
to build a bridge between application-level energy management and hardware-level
energy management, by elucidating how various application-level features respond
to Dynamic Voltage and Frequency Scaling (DVFS), arguably the most classic
hardware-based energy management approach. Finally, we apply our findings to
real-world applications, demonstrating their potential for greater energy savings.
The empirical study is particularly relevant in the Big Data era, where data-
intensive applications are large energy consumers, and their energy efficiency is
strongly correlated to how data are maintained and handled in programs.

Keywords: Energy consumption, Application-level data management

1 Introduction

Modern computing platforms are experiencing an unprecedented diversification. Beneath
the popularity of the Internet of Things, Android phones, Apple iWatch and Unmanned
Aerial Vehicles, a critical looming concern is energy consumption. Traditionally addressed
by hardware-level (e.g., [13,6]) and system-level approaches (e.g., [8,21]), energy optimiza-
tion gains momentum in recent years by focusing on application development [4,5,16].
These application-level energy management strategies complement lower-level strategies
with an expanded optimization space, yielding distinctive advantages: first, applications
are viewed as a white box, whose structural features may be considered for energy opti-
mization; second, the knowledge of programmers and their design choices can influence
energy efficiency. Recent studies [19] show application-level energy management is in high
demand among application developers.

The grand challenge ahead is the lack of systematic guidelines for application-level
energy management. Unlike lower-level energy management strategies that often happen
“under the hood,” application-level energy management requires the participation of ap-
plication software developers. For example, programmers need to understand the energy
behaviors at different levels of software granularities in order to make judicious design
decisions, and thus improve the energy efficiency. As indicated in recent studies, the devil



2 Kenan Liu, Gustavo Pinto, and Yu David Liu

often lies with the details [3,20], and the guidelines are often anecdotal or incorrect [19].
Should we pessimistically accept that the optimization space of application-level energy
management as unchartable waters, or is there wisdom we can generalize and share with
application developers in their energy-aware software development?

This paper is aimed at exploring this important yet largely uncharted optimization
space. Even though the energy impact of arbitrary developer decisions — e.g., using en-
cryptions when the battery level is high and no security otherwise — is impossible to
generalize and quantify, we believe a sub-category of such design decisions — those re-
lated to data — have interesting and generalizable correlations with energy consumption.
With Big Data applications on the rise, we believe the data-oriented perspective on study-
ing application-level energy management may in addition have the forward-looking appeal
on future energy-aware software development. In particular, we attempt to answer the
following research questions:

RQ1 How does the choice of application-level features impact energy consumption?
RQ2 How does application-level energy management interact with hardware-level energy

management?

For RQ1, we consciously look into features “middle-of-the-road” in granularity: they
are coarser-grained than instructions [26] or bytecode [12,17] to help retain the high-level
intentions of application developers, yet at the same time finer-grained than software
architectures or frameworks to facilitate reliable quantification. Specifically, we study the
impact of energy consumption over different choices of:

– data access pattern: For a large amount of data, does the pattern of access (sequential
vs. random, read vs. write) impact energy consumption?

– data organization and representation: For different representations of the same data
(unboxed vs. boxed data, primitive arrays vs. array lists) have impact on energy con-
sumption?

– data precision: Do precision levels (short, integer, floating points, double, long) of data
have significant impact on energy consumption?

– data I/O strategies: For I/O-intensive applications, do different choices of buffering
and different levels of data intensity have impact on energy consumption?

To answer RQ2, we are aimed at connecting application-level energy management
and its lower-level counterparts. It is our belief that energy consumption is the combined
effect of interactions through application software, system software, and hardware; the best
energy management strategy should be the harmonious coordination of all layers of the
compute stack. Concretely, we reinvestigate the aforementioned data-oriented application
features in the context of Dynamic Voltage and Frequency Scaling [13] (DVFS), arguably
the most classic hardware-based energy management strategy. For instance, when the
CPU operational frequency reduces from 2.6Ghz to 1.2Ghz, does it have proportional and
identical impact on energy/performance of two programs, one with sequential access and
the other with random access (or one with double precision and the other with integer
precision)? The answer to this question explores the expanded optimization space where
“software meets hardware, ” over a frontier where software engineering research joins forces
with hardware architecture research.

The paper makes the following contributions:

– It performs the first empirical study that systematically characterizes the optimization
space of application-level energy management, from the fresh perspective of focusing on
data. The energy optimization space is explored through multiple dimensions, ranging



Data-Oriented Characterization of Application-Level Energy Optimization 3

from data access pattern, data organization and representation, data precision, and
data I/Os intensity.

– It conducts a set of holistic experiments aimed at bridging application-level and
hardware-level energy management, and constructing a unified optimization space con-
necting hardware and application software.

– It reports the release of jRAPL, an open-source library to precisely and non-invasively
gather energy/performance information of Java programs running on Intel CPUs.

2 Methodology

In this section, we introduce our research methodology and the details of our experimental
environment.

2.1 The Open-Source jRAPL Library

We have developed a set of APIs for profiling Java programs running on CPUs with Run-
ning Average Power Limit (RAPL) [6] support. Originally designed by Intel for enabling
chip-level power management, RAPL is widely supported in today’s Intel architectures,
including Xeon server-level CPUs and the popular i5 and i7. RAPL-enabled architectures
monitors the energy consumption information and stores it in Machine-Specific Registers
(MSRs). Such MSRs can be accessed by OS, such as the msr kernel module in Linux.
RAPL is an appealing design, particularly because it allows energy/power consumption
to be reported at a fine-grained manner, e.g., monitoring CPU core, CPU uncore (caches,
on-chip GPUs, and interconnects), and DRAM separately.

Our library can be viewed as a software wrapper to access the MSRs. The RAPL
interface itself has broader support for energy management, whereas our library only uses
its capability for information gathering, a mode in RAPL named “energy metering.” Since
the msr module under Linux runs in privileged kernel mode, jRAPL works in a similar
manner as system calls.

The user interface for jRAPL is simple. For any block of code in the application whose
energy/performance information is to the interest of the user, she simply needs to enclose
the code block with a pair of statCheck invocations. For example, the following code
snippet attempts to measure the energy consumption of the doWork method, whose value
is the difference between beginning and end:

double beginning = EnergyCheck.statCheck();

doWork();

double end = EnergyCheck.statCheck();

Additional APIs also allow time and other lower-level hardware performance counter
information (for diagnostics) to be collected. The API can flexibly collect either CPU
time, User Mode time, Kernel Mode time, and Wall Clock time. If not explicitly specified,
all time reported in the paper is wall clock time. When the CPU consists of multiple
cores, jRAPL can report data either individually or combined. Throughout the paper, all
energy/power data for multi-core CPUs are reported as combined.

Compared with traditional approaches based on physical energy meters, the jRAPL-
based approach comes with several unique advantages:

– Refined Energy Analysis: thanks to RAPL, our library can not only report the over-
all energy consumption of the program, but also the breakdown (1) among hardware
components and (2) among program components (such as methods and code blocks).



4 Kenan Liu, Gustavo Pinto, and Yu David Liu

As we shall see, refined hardware-based analysis allows us to understand the relative
activeness of different hardware components, ultimately playing an important role in
analyzing the energy behaviors of programs. In meter-based approaches, hardware de-
sign constraints often make it impossible to measure a particular hardware component
(such as CPU cores only, or even DRAMs because they often share the power supply
cables with the motherboard).

– Synchronization-Free Measurement : in meter-based measurements, a somewhat thorny
issue is to synchronize the beginning/end of measurement with the beginning/end of
the execution of interest. This problem would be magnified if one considers fine-grained
code-block based measurement, where the problem de facto becomes the synchro-
nization of measurement and the program counter. With jRAPL, the demarcation of
measurement coincides with that of execution; no synchronization is needed.

One drawback of the jRAPL-based approach is the energy data collection itself may
incur overhead. Fortunately, the time overhead for MSR access is in the microseconds,
magnitudes lower than the execution time of our experiments.

2.2 Experimental Environment

We run each experiment in the following machine: a 2×8-core (32-cores when hyper-
threading is enabled) Intel(R) Xeon(R) E5-2670, 2.60GHz, with 64GB of DDR3 1600
memory. It has three cache levels (L1, L2 and L3) with 64KB per core (128KB total),
256KB per core (512KB total) and 3MB (smart cache), respectively. It is running Debian
6 (kernel 3.0.0-1-amd64) and Oracle HotSpot 64-Bit Server VM (build 20.1-b02, mixed
mode), JDK version 1.6.0 26. The processor has the capability of running at several fre-
quency levels, varying from 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4 and 2.6 GHz. Due to architecture
design, the RAPL support can access CPU core, CPU uncore in addition access DRAM
energy consumption data.

For the JVM, the parallel garbage collector is used, and just-in-time (JIT) compilation
is enabled to be realistic with real-world Java applications. The initial heap size and
maximum heap size are set to be 1GB and 16GB respectively. We run each benchmark 6
times within the same JVM; this is implemented by a top-level 6-iteration loop over each
benchmark. The reported data is the average of the last 4 runs. If the standard deviation
of such 4 runs is greater than 5%, we executed the benchmark again until results stabilize.
All experiments were performed with no other load on the OS. Unless explicitly specified
in the paper, the default ondemand governor of Linux is used for OS power management.
Turbo Boost feature is disabled.

3 Application-Level Energy Management

This section explores the optimization space of application-level energy management through
four data-oriented characterizations.

3.1 Data Access Patterns

We first examine how energy consumption differs under sequential and random access. By
access, we consider both read and write operations. The read micro-benchmark traverses
a large array (of size N=50,000,000), retrieving the value at each position, and its write
counterpart assigns integer 1 to each position. To construct a fair comparison between
sequential and random access, we resort to an “index array” preloaded with index numbers:



Data-Oriented Characterization of Application-Level Energy Optimization 5

numbers from 1 to N in that order for sequential access, and a random permutation of
numbers between 1 and N for random access. Thanks to the index array, the program logic
is identical for sequential and random access. The reported energy/performance results do
not consider preloading.

W1 W2 W3 W4 W5 R1 R2 R3 R4 R5
0

100

200

300

400

500

600

700

E
n
e
rg

y
 (

J) DRAM
Uncore
CPU

0

5

10

15

20

25

30

Po
w

e
r 

(W
)

Uncore CPU DRAM W1 W2 W3 W4 W5 R1 R2 R3 R4 R5
0

2

4

6

8

10

12

14

16

18

Ti
m

e
 (

S
)

Fig. 1. Energy/Performance behaviors under different data access patterns

Figure 1 shows the benchmarking results, with energy (bars) and power (lines) data in
the left figure, and time in the right figure. There are 10 bars for each figure, indicating
the combination of sequential vs. random access and read vs. write access. The read/write
accesses are differentiated by label prefix R and W, respectively. The suffix 1 represents
sequential access, 2 for 100% random access, 3 for 1% random access, and 4 for 0.1%
random access. The level of randomness is controlled by index range: For instance, we
imitate 1% random access by allowing random permutation within each N × 1% interval
of the array. We now discuss several findings of interest.

First, the most obvious observation is that random access consumes much more energy
than its sequential counterpart. For example, 100% random write consumes 11.31x more
energy than sequential write (W2 and W1), and the same ratio for read is 10.34x (R2 and
R1). The root cause of this phenomenon is cache locality. In the random scheme, neither
the hardware nor the runtime (e.g., through pre-fetching or bulking optimization) is likely
to be effective to reduce cache misses. Indeed, the execution time of random vs. sequential
access (the figure on the right) show a similar trend, an unsurprising fact.

Second, energy and performance are not proportional for read vs. write — otherwise,
the bars in the right figure would become a (boring) predictor of the bars in the left.
By physics, energy is the multiplication of power and time. Thus, if the proportionality
between energy and performance were to hold, power consumption would be a constant.
Interestingly, read and write operations have consume roughly the same amount of energy.
We believe this can be explained in terms of LOAD and STORE hardware instructions,
which have similar overhead. Primitive arrays do not impose aditional significant overhead.

Third, DRAM power consumption appears to remain rather stable. This trend appears
to hold for nearly all experiments we conducted for this research. This may be good news
for systems where DRAM data are not available for its RAPL interface. We can estimate
it based on execution time (and the roughly constant power consumption).

3.2 Data Representation Strategies

Let us now investigate the impact of different data representation strategies on energy
consumption. First, we look into the difference between representing a sequence of integers
as primitive arrays and ArrayList. We construct a similar experiment as one described
in Section 3.1, by traversing the two data structures of a large size (N = 50,000,000). In



6 Kenan Liu, Gustavo Pinto, and Yu David Liu

the ArrayList implementation, we mimic “read” through the List.get(int i) method,
and “write” through the List.set(int i, Object o) method.

SEQ-W RAN-W SEQ-R RAN-R
0

200

400

600

800

1000

1200

1400

1600

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

5

10

15

20

25

30

Po
w
e
r 
(W

)

Uncore CPU DRAM SEQ-W RAN-W SEQ-R RAN-R
0

5

10

15

20

25

30

35

40

45

Ti
m

e
 (

S
)

Fig. 2. Energy/Performance behavior of ArrayList representation

The energy/performance results of the ArrayList implementation are shown in Fig-
ure 2, where SEQ/RAN/R/W labels denote sequential, random, read, and write access, re-
spectively. Compared with Figure 1, energy consumption is significantly higher: the RAN-R

configuration with primitive array representation consumes around 670J, whereas its coun-
terpart result here is around 1550J. This does not come as a surprise. After all, the
getter/setter required by ArrayList are both method invocations, significantly more ex-
pensive than primitive array read/write. Other than this, most conclusions we drew in the
previous subsection applies to the ArrayList implementation as well, in terms of both
the relative standings between sequential vs. random access and the relative standings
between read vs. write access.

Observant readers may find ArrayList uses boxed data (of Integer type) whereas our
primitive array implementation uses unboxed data (of int type). Does data boxing/un-
boxing have significant impact on energy consumption? The more general question here
is what representation of an object is being accessed: a reference to it, or a value it holds.
We construct the next set of experiments to answer this question. Here, our experiments
are divided in three groups:

– Reference Query: accesses the references of Integer objects;
– Value Query: accesses the value that Integer objects hold;
– Type Query: accesses the type held by Integer objects;

RQ1 RQ2 RQ3 TQ1 TQ2 TQ3 VQ1 VQ2 VQ3
0

500

1000

1500

2000

2500

3000

E
n
e
rg

y
 (

J) DRAM
Uncore
CPU

0

5

10

15

20

25

30

35

Po
w

e
r 

(W
)

Uncore CPU DRAM

Fig. 3. Energy behavior: reference query, value
query, and type query.

Figure 3 shows the experimental results
when we perform three queries over a large
array of Integers. The Reference Query,
Value Query and Type Query are labeled,
respectively, as RQ, VQ and TQ. Postfix 1
denotes sequential access, 2 denotes 100%
random access, and 3 denotes 25% ran-
dom access. Reference Query is the most
efficient in both energy and time, consum-
ing similar amount of energy when com-
pared to its relative – the Type Query
strategy. However, both approaches con-
sume less energy than Value Query. Reference Query consumes 6.61x less energy, while
Type Query consumes 10.19x less energy. Similar pattern is also observed in the time fig-
ure (References Query performs 5.03x faster than Value Query). Also, since Value Query



Data-Oriented Characterization of Application-Level Energy Optimization 7

is mostly a CPU-intensive operation, we observed an increase of 8.19x in the CPU energy
consumption when compared to Reference Query.

3.3 Data Organization

In the next experiment, we consider two programs in Figure 4 and Figure 5. Functional
equivalent, the first object-centric program accesses a large array of objects with 5 fields,
and the second attribute-centric program accesses 5 primitive arrays.

class Grouped {

int a, b, c, d, e = ...;

}

class Main {

Grouped[] group = ...;

void calc() {

for (int i = 0; i < N; i++) {

group[i].e = group[i].a * group[i].b * group[i].c * group[i].d;

}}}

Fig. 4. Object-Centric Data Grouping

class Main {

int[] a = ..; int[] b = ..; int[] c = ..; int[] d = ..; int[] e = ..;

void calc() {

for (int i = 0; i < N; i++) {

e[i] = a[i] * b[i] * c[i] * d[i];

}}}

Fig. 5. Attribute-Centric Data Grouping

object-centric attribute-centric
0

5

10

15

20

25

30

35

40

E
n
e
rg

y
 (
J) DRAM

Uncore
CPU

0

10

20

30

40

50

60

70

80

Po
w
e
r 
(W

)

Uncore CPU DRAM

Fig. 6. Energy behavior under different data or-
ganizations.

As shown in Figure 6, the object-centric
data grouping consumes about 2.62x en-
ergy. The results here may reveal a trade-
off between programming productivity and
energy efficiency. Object-oriented encap-
sulation is known to have many bene-
fits, such as modularity, information hid-
ing, and maintainability. That being said,
it does pay a toll on energy consumption,
likely due to heap objects are allocated in
non-contiguous space.

3.4 Data Precision Choices

In this section, we analyze the energy consumption of different primitive data types. We
start with a matrix multiplication using int, and then we compare this implementation
with four other variations by replacing the array element type from int to short, float,
double, and long types respectively. For our environment, long/double/float/int/short
data types are 64/64/32/32/16 bits respectively.



8 Kenan Liu, Gustavo Pinto, and Yu David Liu

int short double float long
0

100

200

300

400

500

600

700

800

900

E
n

e
rg

y
 (

J) DRAM
Uncore
CPU

0

5

10

15

20

25

30

35

Po
w

e
r 

(W
)

Uncore CPU DRAM

Fig. 7. Energy behavior under different data pre-
cision choices

Figure 7 shows the int-based matrix
consumes 3.39x more energy than its short
counterpart. The matrix of double data
type consumes 1.45x energy than that of
the int type, and 4.95x energy than short.
We believe the difference results from the
behaviors of the cache and the FPU. Values
of a larger size require more space to store
in the cache and also require more memory
bandwidth. Both float and double entail
increased activities in the FPU unit, which
in turn lead to increased energy consumption. Our results show that, if programmers have
a precise knowledge of the data range and the precision of output result, significant energy
savings and performance gains are possible, e.g., replacing int with short, or double with
float for data types.

3.5 Data I/O Configurations

In this section, we analyze the energy behaviors of I/O operations. We use two bench-
marks that read and write to a file using FileInputStream and FileOutputStream ob-
jects, respectively. These operations are buffered using the BufferedOutputStream and
BufferedInputStream objects. We also use two other variations of these benchmarks, in
which read and write are not buffered. This modification prevents data buffering and hence
causes additional system calls (one call for each written byte).

Write w/ Buffer Read w/ Buffer Write wo/ BufferRead wo/ Buffer
0

500

1000

1500

2000

2500

3000

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

5

10

15

20

25

30

35

40

Po
w
e
r 
(W

)

Uncore CPU DRAM

Fig. 8. Energy/Performance behaviors of data
I/O operations

Figure 8 shows how energy consump-
tion behaves under different I/O opera-
tions. First, buffering has significant im-
pact on improving energy efficiency. In all
cases, the energy consumption for buffered
I/O is small/negligible compared with
their unbuffered counterpart (for instance,
write with buffer consumes 5.92x less en-
ergy than without buffer). Indeed, buffer
removal in essence disables bulking of I/O
operations, so its effect on energy con-
sumption is dramatic. We then believe that
buffering write and read operations should be mandatory, when possible. Second, data
output is significantly more energy-consuming than data input. For unbuffered I/O, en-
ergy consumption between data output and data input is near 5x. Third, contrary to the
popular belief that CPU/memory would be set to lower power state when I/O is being
performed, power consumption for both CPU core, CPU Uncore, and DRAM remains on
par with that from experiments in earlier sections. This implies Linux’s default power
management strategy — the ondemand governor — may not be aggressive enough. It may
indeed be said that for the buffered experiments, the execution time may be short enough
so that the ondemand governor does not have sufficient time to kick in, but it is baffling
that for unbuffered I/O where the execution time can reach as long as 100 seconds, the
CPU/memory is not placed to much lower power state.

We also explored two additional I/O mechanisms: the first one – a lightweight I/O oper-
ation, which we call stdout – constitutes a simple invocation to the System.out.println

method. When the println() method is invoked, the flush() method is automatically



Data-Oriented Characterization of Application-Level Energy Optimization 9

WriteEnergy WriteT ime
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100%

25%

1%

0.1%

SEQ

-2.5 -1.99 -2.01 -0.47 -0.43 -0.4 -0.41 0.0

-3.36 -2.55 -2.63 -0.77 -0.75 -0.71 -0.72 0.0

-3.25 -3.15 -3.06 -0.83 -0.72 -0.62 -0.58 0.0

-2.99 -2.03 -2.03 -0.44 -0.35 -0.3 -0.21 0.0

-2.44 -2.29 -2.35 -0.68 -0.59 -0.53 -0.43 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100%

25%

1%

0.1%

SEQ

-2.54 -1.64 -1.37 -1.17 -1.02 -0.91 -0.82 0.0

-3.22 -2.03 -1.75 -1.51 -1.37 -1.25 -1.15 0.0

-3.2 -2.64 -2.12 -1.66 -1.39 -1.18 -0.99 0.0

-2.86 -1.64 -1.38 -1.07 -0.87 -0.71 -0.54 0.0

-2.63 -2.04 -1.97 -1.5 -1.26 -1.11 -0.87 0.0

Fig. 10. DVFS and (Write) Access Patterns. (Labels on top are CPU frequencies, and labels to
the left are random/sequential access patterns, with the same convention as in Fig. 1. All data
are normalized against the 2.6Ghz data of the same row. Red indicates savings, whereas Blue
indicates loss. The darker the Red shade, the more “favorable” the configuration is, i.e., greater
energy/time savings. The darker the Blue shade, the more “unfavorable” the configuration is i.e.,
greater energy/time loss. )

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100%

25%

1%

0.1%

SEQ

-0.76 -0.55 -0.4 -0.3 -0.21 -0.15 -0.09 0.0

-0.72 -0.5 -0.36 -0.24 -0.16 -0.13 -0.06 0.0

-0.39 -0.46 -0.16 -0.36 -0.27 -0.25 -0.04 0.0

-0.61 -0.8 -0.34 -0.38 -0.15 -0.13 -0.24 0.0

-0.66 -0.5 -0.37 -0.25 -0.19 -0.14 -0.07 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100%

25%

1%

0.1%

SEQ

-0.15 -0.08 0.01 0.1 0.06 0.16 0.09 0.0

-0.04 -0.05 0.11 0.14 0.07 0.2 0.16 0.0

-0.2 -0.14 0.0 0.04 0.03 0.11 0.09 0.0

-0.53 -0.37 -0.29 -0.19 -0.13 -0.06 -0.05 0.0

-0.31 -0.2 -0.13 -0.07 -0.04 -0.02 -0.01 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100%

25%

1%

0.1%

SEQ

-0.78 -0.56 -0.42 -0.31 -0.26 -0.19 -0.11 0.0

-0.86 -0.64 -0.55 -0.39 -0.28 -0.19 -0.14 0.0

-0.13 0.11 0.01 0.04 0.21 0.25 0.07 0.0

-0.66 -0.42 -0.42 -0.26 -0.65 -0.11 -0.13 0.0

-0.45 -0.24 -0.19 -0.12 0.0 0.03 0.01 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

short

integer

long

float

double

-0.62 -0.63 -0.43 -0.34 -0.25 -0.19 -0.26 0.0

-0.8 -0.55 -0.42 -0.39 -0.27 -0.21 -0.12 0.0

-0.78 -0.56 -0.43 -0.32 -0.25 -0.18 -0.1 0.0

-0.81 -0.52 -0.49 -0.44 -0.27 -0.24 -0.21 0.0

-0.25 -0.19 -0.14 -0.1 -0.08 -0.03 0.03 0.0

ReferenceQuery V alueQuery TypeQuery DataPrecision

Fig. 11. DVFS and Data Representation/Precision. Only energy results are shown.

invoked and byte array is written in the standard output channel. The value of N for
this benchmark is 500,000. The other benchmark – which we call socket – implements
a basic socket operation. In the socket benchmark, we are only measuring the energy
consumption in the receiver side. The input data of this benchmark comprises 3 binary
files with sizes of 1.1GB, 536.9MB and 209.7MB, which are sent in a row. No concurrency
is involved.

Stdout Socket
0

50

100

150

200

250

E
n
e
rg

y
 (

J)

Uncore
CPU

0

2

4

6

8

10

12

Po
w

e
r 

(W
)

Uncore CPU

Fig. 9. Energy/Performance behaviors of differ-
ent I/O workloads

There are a number of interesting find-
ings from the results, shown in Figure 9.
First, different workloads have different im-
pacts. The socket implementation con-
sumes 17.15x energy than the stdout con-
figuration. That being said, energy con-
sumption in the stdout benchmark is not
negligible either, at about 379J. Program-
mers should take this result in considera-
tion, for instance, when deciding whether
to log every event in their applications. We
also observed the lowest CPU power consumption in the socket benchmark. There, CPU
is almost entirely neglected, which enables the processor to go to the idle state and save
power.



10 Kenan Liu, Gustavo Pinto, and Yu David Liu

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

O/B

O/U

0.3 0.36 0.27 0.16 0.14 0.11 0.08 0.0

-0.62 -0.51 -0.7 -0.31 -0.69 -0.61 -0.57 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

I/B

I/U

0.41 0.34 0.52 0.32 0.58 0.6 0.16 0.0

-0.64 -0.56 -0.33 -0.27 -0.19 -0.13 -0.05 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

O/B

O/U

-0.09 -0.05 -0.05 -0.02 -0.02 0.0 0.0 0.0

-1.08 -0.76 -0.56 -0.52 -0.35 -0.15 -0.08 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

I/B

I/U

-0.25 -0.07 0.06 0.17 0.25 0.32 -0.12 0.0

-1.15 -0.99 -0.63 -0.49 -0.35 -0.22 -0.09 0.0

output energy input energy output time input time

Fig. 12. DVFS and Data I/O (O: Output, I: Input, B: Buffered, U: Unbuffered). Only energy
results are shown.

4 Unifying Application-Level Optimization with DVFS

This section places application-level energy management in a broader context, investigat-
ing its combined impact with hardware-based energy management.

Background DVFS [13] is a common CPU feature where the operational frequency and the
supply voltage of the CPU can be dynamically adjusted. DVFS is a classic and effective
power management strategy. The dynamic power consumption of a CPU, denoted as P ,
can be computed as P = C ∗ V 2 ∗ F , where V is the voltage, F is the frequency, and
C is a (near constant) factor. The energy consumption E is an accumulation of power
consumption over time t, i.e., through formula E = P ∗ t.

Scaling down the CPU frequency is effective in saving power. Saving energy, however,
is more complex because a reduction of frequency may increase the execution time. Thus,
DVFS energy management often deals with the trade-off between energy consumption and
performance.

Result Summary Figure 10, Figure 11, and Figure 12 report selected results from the same
experiments constructed in the previous section, except that the executions are conducted
at different CPU frequencies. Due to page limit, we defer the complete data set in the
online repository (See Sec. 8 for information). All figures are represented as heat map
matrices.

A common trend among these experiments is that downscaling CPU often leads to less
“favorable” results: in the majority of experiments, not only there will be a performance
loss, but also increased energy consumption. The root cause is that DVFS only directly
influences the CPU power consumption. The power consumption for the Uncore and the
DRAM sub-systems remain roughly constant. Thus, since time increases as frequency
decreases, energy consumption for these sub-systems increases as well when a lower CPU
frequency is selected. For the CPU core sub-system, the effect on energy consumption in
the presence of downscaling depends on whether the decrease in power (P ) may offset the
increase in time (t). This is a sober reminder of the applicability of DVFS as an energy
management strategy: whileas downscaling can be effective in some scenarios, it blind
DVFS is likely to fall short in goals. As a symptom, observe that the use of the lowest
frequency in most cases consumes the most energy.

Indeed, our discussion above adopted a very narrow notion to define what is “favor-
able.” For instance, running CPUs at the lowest frequency may reduce heat dissipation,
and improve the reliability of program execution.



Data-Oriented Characterization of Application-Level Energy Optimization 11

Overall, our results can serve as a “look up” chart to guide energy-aware program-
mers to desirable combinations of application-level energy management and hardware-
level energy management. For example, if a programmer wishes to execute the matrix
manipulation program in Figure 7 with a budget of 105J, she can look up the results from
Figure 11, either choosing to run with double precision at 1.2GHz, or with int precision at
2.2GHz. The two configurations have distinct advantages: the 1.2GHz/double execution
may reduce heat dissipation, whereas the 2.2GHz/int may produce results faster.

Specific Findings In Figure 10, the most interesting results is perhaps 100% random access
or 25% random access. Here, executing the program at frequencies of 2.4GHz, 2.2GHz,
2GHz, and 1.8GHz can all yield energy savings. There is a performance loss in these
configurations, but the loss is also smaller than their more sequential counterparts. These
configurations may be useful for energy management since they represent a possible trade-
off between energy savings and performance loss. We speculate the underlying reason why
the more random access patterns react to DVFS better is that random access leads to
significant cache misses and instruction pipeline stalls, so the CPU more frequently “wait
for” data fetch. When the CPU frequencies are lowered, the relative impact on performance
is hence smaller.

The most encouraging results come from Figure 12. Here, especially in the buffered
I/Os, lowering CPU frequency can often yield energy savings. This is dramatic for cases
such as buffered input (I/B), where the energy consumption for 2.2GHz is less than half
of that of 2.6GHz, whereas the execution time at 2.2GHz turns out being shorter than
that of 2.6GHz. This is a “sweet spot” in energy management, the program is not only
more energy-efficient, but also runs faster. The cause behind this behavior is that CPUs
running such I/O-intensive benchmarks are mostly idle, so lowering the CPU frequency has
little impact on performance, but can significantly save energy. The improved performance
may come as a mild surprise to some; we believe this demonstrates the execution time is
not bound by CPU, but the storage system. The operations of the latter are often less
deterministic, causing delays at unpredictable times.

5 Case Study

In this section we apply our findings to two real-world benchmarks, Sunflow and Xalan,
from the well-known DaCapo suite benchmark [2]. Sunflow renders a set of images using
ray tracing, a CPU-intensive benchmark. We performed the experiments varying the data
types from int to short, float, double, and long only in the method that renders the
figure. The rest of the source code remained untouched. Figure 13 and Figure 14 show the
results.

int short double float long
0

100

200

300

400

500

600

700

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

50

100

150

Po
w
e
r 
(W

)

Uncore CPU DRAM int short double float long
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
 (

S
)

Fig. 13. Sunflow: energy/performance behaviors under different data precision choices



12 Kenan Liu, Gustavo Pinto, and Yu David Liu

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

short

integer

long

float

double

0.23 0.31 0.06 0.28 0.21 0.14 0.1 0.0

0.04 0.18 0.24 0.16 -0.12 0.1 0.06 0.0

0.11 0.19 0.22 0.24 0.15 0.08 0.08 0.0

-0.04 0.12 0.0 0.11 0.02 0.02 0.0 0.0

0.19 0.27 0.4 0.22 0.32 0.08 0.18 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

short

integer

long

float

double

-1.27 -0.78 -1.16 -0.42 -0.4 -0.36 -0.27 0.0

-1.83 -1.12 -0.72 -0.68 -1.05 -0.43 -0.33 0.0

-1.62 -1.1 -0.76 -0.51 -0.52 -0.47 -0.29 0.0

-2.07 -1.3 -1.28 -0.79 -0.75 -0.56 -0.42 0.0

-1.41 -0.89 -0.36 -0.59 -0.21 -0.48 -0.17 0.0

Energy T ime

Fig. 14. Sunflow: energy/performance behaviors under different data precision choices with
DVFS

Some patterns we learned from micro-benchmarking remain. For instance, short still
consumes less energy than int, float still consumes less energy than double, and short

and int still consume less energy than float and double. Differently, however, we found
that Sunflow float and double data types proportionally consume much more energy
than other data types. We believe that this can be explained in terms of the rounding error.
In most programs the result of integer computations can be stored in 32 bits. However,
given any fixed number of bits, most calculations with real numbers will produce quantities
that cannot be exactly represented using that many bits. Thus, the result of a floating-point
calculation must often be rounded to fit back into its finite representation. Although the
IEEE standard requires that the result of addition, subtraction, multiplication and division
be exactly rounded, the rounding process is proven to be expensive [10], in particular when
operands differ greatly in size. Since there is no need to round the result of our matrix
multiplication benchmark, this overhead is not observed.

Also, even though Sunflow is a complex application — it has more than 22,000 lines of
Java code — we observed that a simple modification on the data types of a single method
can have a considerable influence in the overall energy consumption of the application.
For this experiment, however, the programmer needs to trade energy consumption for
accuracy, since most of the computation are based on floating points. This also explains
why double and float are more energy-consuming.

Xalan transforms XML documents into HTML. This benchmark performs reads and
writes from input/output channels, and it has 170,572 lines of Java code. In its default
version, the benchmark does not usage a buffer. We apply this modification in two single
places in the XSLTBench class. When applying this modification, we observed an energy
saving of 4.29%. Execution time kept roughly the same. Figure 15 and Figure 16 show the
results.

Ultimatelly, it is also important to mention that, according to previous studies [14],
micro-optimizations for power and energy are challenging to present significant improve-
ments on real world benchmarks, once the benchmark is already optimized for perfor-
mance. This is particular true for for all DaCapo benchmarks. We consider these results
as an opportunity to further energy optimization.



Data-Oriented Characterization of Application-Level Energy Optimization 13

Buffered Not Buffered
0

100

200

300

400

500

600

E
n
e
rg
y
 (
J) DRAM

Uncore
CPU

0

20

40

60

80

100

Po
w
e
r 
(W

)

Uncore CPU DRAM Buffered Not Buffered
0

1

2

3

4

5

Ti
m

e
 (

S
)

Fig. 15. Xalan: energy/performance behaviors under different data I/O strategies

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

UN

BU

0.16 0.2 0.18 0.2 0.15 0.14 0.13 0.0

0.14 0.17 0.17 0.16 0.15 0.13 0.11 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

UN

BU

-0.72 -0.51 -0.42 -0.28 -0.26 -0.18 -0.1 0.0

-0.77 -0.55 -0.43 -0.34 -0.26 -0.18 -0.12 0.0

Energy T ime

Fig. 16. Xalan: energy/performance behaviors under different data I/O strategies with DVFS

6 Threats to Validity

We divide our discussion on threats to validity into internal factors and external factors.
Internal factors: First, accessing MSRs also consumes energy (see discussions in

Section 2.1). This overhead cannot be ignored if MSR accesses are too frequent, e.g., at
microsecond intervals. We mitigate this problem by using the RAPL interface only at
the beginning and at the end of the benchmark execution. Second, the readings from
the RAPL interface are hardware (CPU core or socket)-based. It cannot isolate energy
consumption due to OS execution, VM execution, or application execution. As our ex-
periments are mostly set up to be comparative — such as demonstrating the difference
in energy consumption between sequential vs. random access, and the difference under
different frequency settings — but our OS/VM settings remain unchanged throughout
experiments, the root cause of relative difference in energy consumption for different ex-
periments is likely to be the (direct and indirect) effect of applications, not OS or VM.
Third, analyzing code with a short execution time may disproportionally amplify the noise
from hardware and OS. We mitigate this problem by increasing the execution length of
our benchmarks (such as via designing the benchmark to operate on a large amount of
data) and averaging the results of multiple executions.

External factors: First, our results are limited by our selection of benchmarks.
Nonetheless, our corpus spans a wide spectrum, ranging from data access, data represen-
tation, data precision, and data intensity distribution over hardware components. Second,
there are other possible data manipulations beyond the scope of this paper. With our tool,
we expect similar analysis can be conducted by others when other aspects of data-related
application features become relevant. Third, our results are reported with the assumption



14 Kenan Liu, Gustavo Pinto, and Yu David Liu

that JIT is enabled. This stems from our observation that later runs of JIT-enabled ex-
ecutions do stabilize in terms of energy consumption and performance. We experienced
differences in standard deviation of over 30% when comparing the warmup run (first 2
executions) and later runs, but less than 5% when comparing the last 4 runs.

7 Related Work

Studying energy efficiency at the application level is an emerging direction. In this section
we describe the studies overlapping with the scope of our work.

Energy management. The most established energy management approaches are
focused on the hardware level (e.g., [13,6]) and the OS level (e.g., [9,18]). In recent years,
a number of studies have explored energy management strategies at the application level
as an attempt to empower the application programmer to take energy-aware decisions,
since design choices might influence energy efficiency. Some of these studies focus on the
design of new programming models, with examples such as Green [1], EnerJ [23], Energy
Types [5], and LAB [15]. In these systems, recurring patterns of energy management tasks
are incarnated as first-class citizens. Approximated programming [4] trades and reasons
about occasional “soft errors”, i.e., errors that may reduce the accuracy of the results,
for a reduction in energy consumption. The relationship between this line of work and
our work is complementary: existing work provides language support to facilitate energy
optimization, whereas our work experimentally and empirically establishes the room of
the energy optimization space.

Energy measurement. Energy measurement is a broad area of research. Prior work
has attempted to model energy consumption at the individual instruction level [26], sys-
tem call level [7], and bytecode level [24]. Recent progress also includes fine-grained mea-
surement for Android programs [12,17], with detailed energy measurement of different
hardware components such as camera, Wi-Fi and GPS. RAPL-based energy measurement
has appeared in recent literature (e.g., [14,25]); its precision and reliability has been
extensively studied [11].

Empirical studies. Existing research that dealt with the trade-off of comparing indi-
vidual components of an application and energy consumption has covered a wide spectrum
of applications. These studies vary from concurrent programming [20], VM services [3,14],
cloud offloading [16], and refactorings [22]. To the best of our knowledge, our study is the
first in exploring how different choices of fine-grained data manipulation impact on the
energy consumption of different hardware sub-systems, and how application-level energy
management and lower-level energy management interact.

8 Conclusion

In this paper, we take a data-centric view to empirically study the optimization space of
application-level energy management. Our investigation is unique for several reasons: (1)
it focuses on application-level features, instead of hardware performance counters, CPU
instructions, or VM bytecode; (2) it is carried out from the data-oriented perspective,
charting an optimization space often known to be too “application-specific” to quantify
and generalize; (3) it offers the first clues on the impact of unifying application-level energy
management and hardware-level energy management; (4) it provides an in-depth analysis
from a whole-system perspective, considering energy consumption not only resulting from
CPU cores, but also from cache and DRAM.

A detailed description of our results, the source code of jRAPL, the benchmarks, and
all raw data, can be found online at http://bit.ly/fase2014.

http://bit.ly/fase2014


Data-Oriented Characterization of Application-Level Energy Optimization 15

References

1. W. Baek and T. Chilimbi. Green: A framework for supporting energy-conscious programming
using controlled approximation. In PLDI, 2010.

2. S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
dacapo benchmarks: java benchmarking development and analysis. In OOPSLA, 2006.

3. T. Cao, S. Blackburn, T. Gao, and K. McKinley. The yin and yang of power and performance
for asymmetric hardware and managed software. In ISCA, 2012.

4. M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving acceptability properties of relaxed
nondeterministic approximate programs. In PLDI, 2012.

5. M. Cohen, H. Zhu, S. Emgin, and Y. Liu. Energy types. In OOPSLA, 2012.
6. H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and C. Le. Rapl: Memory power estimation

and capping. In ISLPED, 2010.
7. M. Dong and L. Zhong. Self-constructive high-rate system energy modeling for battery-

powered mobile systems. In MobiSys, 2011.
8. K. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson. Quantifying the energy con-

sumption of a pocket computer and a java virtual machine. In SIGMETRICS, 2000.
9. R. Ge, X. Feng, W. Feng, and K. Cameron. Cpu miser: A performance-directed, run-time

system for power-aware clusters. In ICPP, 2007.
10. David Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Comput. Surv., 23(1):5–48, March 1991.
11. M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy consumption for short code

paths using rapl. SIGMETRICS Perform. Eval. Rev., 40(3):13–17, January 2012.
12. S. Hao, D. Li, W. Halfond, and R. Govindan. Estimating mobile application energy con-

sumption using program analysis. In ICSE, 2013.
13. M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Low Power

Electronics, 1994. IEEE Symposium, 1994.
14. Melanie Kambadur and Martha A. Kim. An experimental survey of energy management

across the stack. In OOPSLA, pages 329–344, 2014.
15. A. Kansal, T. Saponas, A. Brush, K. McKinley, T. Mytkowicz, and R. Ziola. The latency,

accuracy, and battery (lab) abstraction: programmer productivity and energy efficiency for
continuous mobile context sensing. In OOPSLA, 2013.

16. Y. Kwon and E. Tilevich. Reducing the energy consumption of mobile applications behind
the scenes. In ICSM, 2013.

17. D. Li, S. Hao, W. Halfond, and R. Govindan. Calculating source line level energy information
for android applications. In ISSTA, 2013.

18. A. Merkel and F. Bellosa. Balancing power consumption in multiprocessor systems. In
EuroSys, 2006.

19. G. Pinto, F. Castor, and Y. Liu. Mining questions about software energy consumption. In
MSR, 2014.

20. G. Pinto, F. Castor, and Y. Liu. Understanding energy behaviors of thread management
constructs. In OOPSLA, 2014.

21. H. Ribic and Y. Liu. Energy-efficient work-stealing language runtimes. In ASPLOS, 2014.
22. C. Sahin, L. Pollock, and J. Clause. How do code refactorings affect energy usage? In ESEM,

2014.
23. A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:

Approximate data types for safe and general low-power computation. In PLDI, 2011.
24. C. Seo, S. Malek, and N. Medvidovic. Estimating the energy consumption in pervasive java-

based systems. In PerCom, 2008.
25. Balaji Subramaniam and Wu-chun Feng. Towards energy-proportional computing for

enterprise-class server workloads. In ICPE, 2013.
26. V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis and optimization

of software. Journal of VLSI Signal Processing, 13:1–18, 1996.


	Data-Oriented Characterization of Application-Level Energy Optimization

