
Assisting Non-Specialist Developers to Build
Energy-Efficient Software

Benito Fernandes
Federal University of Pernambuco

Recife, PE, Brazil
jbfan@cin.ufpe.br

Gustavo Pinto
Federal Institute of Pará

Belém, PA, Brazil
gustavo.pinto@ifpa.edu.br

Fernando Castor
Federal University of Pernambuco

Recife, PE, Brazil
castor@cin.ufpe.br

Abstract—In this paper we introduce CECOTOOL, a tool that
analyzes the energy behavior of alternative collection implemen-
tations and provides potentially useful recommendations about
good implementation options. We applied it to two real-world
software systems from the DaCapo suite [1], Xalan and Tomcat.
With no prior knowledge of the application domains, we were
able to reduce the energy consumption up to 4.37%.

I. INTRODUCTION

Nowadays, developers are interested in building more
energy-efficient software, even in scenarios where energy is
not an obvious concern, such as desktop applications [2]. One
consequence of this widespread interest in energy is that many
developers who are not specialists also want their applica-
tions to consume less energy. These developers have ample
knowledge and experience with their development platforms
of choice, but lack both knowledge and tools when it comes
to making applications energy-efficient [3].

Every non-trivial software system has parts where it is
possible to use different data structures, API calls, and con-
currency control mechanisms by means of simple source code
transformations. We call these parts energy variation hotspots
when these transformations reduce energy consumption. For
example, the Java language has 9 different implementations of
hash tables. Previous work [4] has shown that an insertion op-
eration in one implementation, ConcurrentHashMap, can
consume less than 1/3 of the same operation in another imple-
mentation, Hashtable. This also applies to other languages
[5], [6], types of constructs [5], and usage scenarios [7].

In this paper, we share our vision about tools for ana-
lyzing the energy behavior of alternative implementations in
an application-independent way. Based on how applications
use these implementations, they can make recommendations
about the most efficient implementation option, allowing non-
specialists to reduce the energy footprint. We have instantiated
this approach in a tool named CECOTOOL1. We applied
CECOTOOL to two real-world software systems, XALAN and
TOMCAT. With no prior knowledge of the application domains,
we were able to reduce the energy consumption up to 4.37%.
Related Work. Some studies propose techniques [8], mod-
els [9], and tools [10] to mitigate the impact of energy
consumption on software evolution. More related to this

1Stands for Collections Energy Consumption Optimization tool.

study, there are works that focus on programming abstractions
familiar to developers, such as data structures [4], [7] and
concurrency control mechanism [5], [11]. These studies share
a common finding: simple changes can reduce energy con-
sumption considerably. However, most of these studies do not
provide tool support for developers. In contrast, our approach
focus on non-expert developers that do not have the knowledge
neither the time or tools to understand the energy impact of
energy-hotspots, but still want to leverage energy savings.

II. OUR APPROACH

Figure 1 provides an overview of our approach. The three
phases are detailed next.

Profiles
Data

Usage
Data

Recommendations
Applications Phase III: 

Recommendation

Phase I: Creation of 
Energy Profiles

Phase II: Usage Analysis

Alternative 
Impl. of Prog. 

Constructs

Fig. 1: An overview of our approach. Phase I is application-
independent whereas Phases II and III also use information
about the system under analysis.

Phase I: Creation of Energy Profiles. Here we select a group
of programming constructs to analyze. We also construct their
energy profiles. Good choices are constructs that are used
intensively and that have alternative implementations. Having
selected the candidate constructs, it is necessary to collect the
energy profiles [7] of their alternative implementations. In this
step, a number of benchmarks are executed to collect infor-
mation about the energy behavior of these implementations in
an application-independent way. This step needs only to be
performed once for a given construct, per execution platform.
The results can be reused across multiple software systems
employing these constructs.
Phase II: Usage Analysis. This phase extracts information
about how the target system uses the selected programming
constructs, for example, usage context and frequency of use.
This information can be extracted dynamically or statically.
In our instantiation of this approach, we have used a purely



static approach. This has the advantage of being platform-
independent and not requiring multiple executions of the
system under analysis.
Phase III: Recommendation. This phase combines the energy
profiles and the results of the usage analysis. Different formu-
lae can be employed in this phase. A straightforward approach
is to linearly combine the energy profiles with the frequency
of use of the operations of each alternative implementation.
Each of these combinations will yield an energy consumption
number that can be directly compared to determine the most
energy-efficient alternative. This is the approach we employed
in our experiments.

III. INSTANTIATION

Our preliminary instantiation focuses on energy variation
hotspots stemming from usage of thread-safe collections. This
approach is implemented by the CECOTOOL.
Phase I. In this phase, we build the energy profiles. These
profiles are based on implementations and operations of three
groups of collections: lists, maps, and sets. CECOTOOL
measures the energy consumed by insertions, removals, and
traversals on the following 11 alternative implementations of
these collections. The output of this phase is a set of energy
consumption measurements that are used in Phase III.
Phase II. CECOTOOL uses an inter-procedural dataflow
static analysis to gather information about the usage of the
collections. It collects information about the frequency of use
and the context where the operations are invoked. We use an
inter-procedural static analysis to estimate the frequency of
use of the three analyzed operations.
Phase III. CECOTOOL makes its recommendation based on
a simple formula that accounts for the energy profile informa-
tion, the number of occurrences of the data structure operations
in the source code, and whether those occurrences appear
within loops or not. CECOTOOL makes its recommendation
based on the result of this formula. It will recommend the data
structure implementation with the lowest value.

IV. PRELIMINARY EVALUATION

Benchmarks. We used two real-world software systems from
the well-known DaCapo suite [1], XALAN and TOMCAT.
These software systems fit in our study because they are non-
trivial, multithreaded, and use data structures intensively. Each
benchmark has three workloads: small, medium, and large.
We applied the large workload for both benchmarks to better
simulate situations of intensive use of data structures in a
concurrent environment. We set the number of threads as the
maximum number of processors available: 20.
Infrastructure. We used a 2×10-core Intel Xeon (Ivy Bridge).
It has 256GB (DDR3 1600MHz) of main memory and runs
Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25), with Java 8.
For energy measurement, we used jRAPL [10].
Methodology. To measure the impact of our recommen-
dations, we created two versions of the benchmarks: the
original version (before recommendation) and transformed

version (after recommendation). We ran each version of each
benchmark 600 times using the same JVM execution. This
number of times was based on the number of samples required
to obtain a 95% confidence interval. The results we report
later in this section comprise the average of the remaining
executions, without outliers. For statistics, we use the non-
parametric Mann-Whitney-Wilcoxon (MWW) test [12] to test
whether the difference among the two transformed versions
is statistically significant. As for effect size, we used Cliff’s
Delta [13], a non-parametric effect size measure for ordinal
values, and the Vargha-Delaney (A12) [14] measure.
Results. When applied to XALAN, CECOTOOL
recommended 13 transformations from Vector to
Collections.synchronizedList(), and 10 transfor-
mations from Hashtable to ConcurrentHashMap. For
TOMCAT, there was just one recommendation to switch from
Vector to Collections.synchronizedList().
However, the tool presented 20 recommendations to switch
from Hashtable to ConcurrentHashMap. All suggested
transformations were applied. These recommendations refer
to a small subset of the used data structures, since they
depend on the workflow employed in Phase II.

After applying the recommendations suggested by CE-
COTOOL, the benchmarks were executed and the energy
consumption was measured. Table I shows the results, before
and after the transformation. As we can see, we were able to
save 2.27% for XALAN and 4.37% for TOMCAT.

The p-value for the Mann-Whitney-Wilcoxon test was
p ≤ 2.2−16 for both benchmarks. As for effect sizes, both
transformed versions of XALAN (Cliff’s Delta = 0.75, A12

= 0.88: very large effect size) and TOMCAT (Cliff’s Delta =
0,72, A12 = 0,43: medium effect size) performed significantly
better than the original ones. These statistical results confirms
our experimental results: the transformed versions are more
energy-efficient than original ones.

TABLE I: The Overall Results

Benchmark Original (J) Transformed (J) Reduction (%)
XALAN 515.49 503.80 2.27%
TOMCAT 217.81 208.30 4.37%

V. CONCLUSION

In this paper we present our proposal to assist non-expert
developers to improve the energy-efficient of their software
without the need to understand how particular energy variation
hotspots behave. Although general, we instantiate our ap-
proach in a tool targeting a common energy variation hotspot,
thread-safe collections in the Java language. By following the
recommendations of our tool, we were able to reduce energy
consumption up to 4.37% in two non-trivial software systems.
Acknowledgements. We would like to thank the anonymous
reviewers for helping to improve this paper. This research was
partially funded by CNPq (304755/2014-1 and 406308/2016-
0), FACEPE (APQ-0839-1.03/14), FACEPE PRONEX (APQ
0388-1.03/14), and PROPPG/IFPA.



REFERENCES

[1] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The dacapo benchmarks: Java benchmarking development and analy-
sis,” in OOPSLA, 2006, pp. 169–190.

[2] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ perspec-
tives on green software engineering,” in ICSE, 2016, pp. 237–248.

[3] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in MSR, 2014, pp. 22–31.

[4] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive study on
the energy efficiency of java thread-safe collections,” in ICSME, 2016.

[5] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes, “Haskell in green land: Analyzing the energy behavior of a
purely functional language,” in SANER, 2016, pp. 517–528.

[6] W. Oliveira, W. Torres, F. Castor, and B. H. Ximenes, “Native or web?
A preliminary study on the energy consumption of android development
models,” in SANER, March 2016, pp. 589–593.

[7] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,

“Energy profiles of java collections classes,” in ICSE, 2016, pp. 225–
236.

[8] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in GECCO, 2015, pp. 1327–1334.

[9] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The
power of system call traces: Predicting the software energy consumption
impact of changes,” in CASCON, 2014, pp. 219–233.

[10] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of
application-level energy optimization,” in FASE, 2015, pp. 316–331.

[11] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors of
thread management constructs,” in OOPSLA, 2014, pp. 345–360.

[12] D. Wilks, Statistical Methods in the Atmospheric Sciences, ser. Aca-
demic Press. Academic Press, 2011.

[13] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, pp. 494–509, Nov.
1993.

[14] A. Vargha and H. D. Delaney, “A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong,”
Journal on Educational and Behavioral Statistics, vol. 25, no. 2, pp.

101–132, 2000.


