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ABSTRACT. The scientific software community is eagerly embracing software                 
development practices and tools. However, the lack of Computer                 
Science background, in general, and Software Engineering training, in                 
particular, pose a toll on scientists that need to develop software.                     
Although some of the problems that scientific software developers face                   
when developing scientific software are already known in the literature,                   
we believe that a comprehensive characterization of this complex                 
landscape is still missing. In this paper we build a taxonomy of 2,110                         
problems (the so called “pains”) reported by 1,577 scientific software                   
developers. These problems are grouped into three major axes:                 
technical-related, social-related, and scientific-related problems. Our           
report helps to better understand the needs and challenges of this so far                         
not fully understood community. 
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1. Introduction 
In the big data era, in which samples of data can easily scale to many orders of                 
magnitude, manual data analysis is rather unfeasible. Sophisticated data analysis,          
therefore, depends on chains of computer programs that generate, clean up, augment,            
plot, and run statistical models on data. The need of specialized software tooling is              
imperative to scientists conduct their work. However, efficient, scalable, and reliable           
software solutions for scientific research are challenged by (1) the frequent and            
unforeseen changes in requirements, (2) the need for both highly specialized domain            
knowledge and programming expertise, and (3) the extremely complex patterns of           
communication on perpetually novel architectures​1​. In addition, such specialized tooling,          
if existing, is often hidden in research laboratories and universities. Research prototypes            
that usually serve only the purpose of validating an idea are not uncommon as well. 

Although the goal of scientists is to do science, not to develop software​1,2,3​, due to the                
lack of specialized tools, many scientists have no option other than acquiring software             
development skills and develop their own software. However, many challenges might be            
hidden in this activity. For instance, since most scientific software packages begin as             
small projects intended for internal use by a research team, one challenge resides when              
moving from a one-person project into a production-ready software intended for general            
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use​2​. ​Another challenge is related to the need of getting acquainted with the software              
engineering arsenal (e.g., process, practices, techniques and tools) required to build           
software. 

While previous work shed some light on how scientists develop software​3​, given the             
fundamental changes in the software development practices in the last few years (e.g., the              
introduction of social coding websites and the prevalence of online learning platforms),            
little is known about the current state-of-the-practice of scientific software development.           
In a recent replication study​4​, we deployed an online survey to ​1,577 R Developers that               
have published at least one R package. We used this population of R Developers as a                
proxy for scientific software developers. As we shall see in Section 2, our respondents              
work on a myriad of research fields, including chemistry, physics, and biology. In our              
questionnaire, we asked them questions about how they learn developing scientific           
software, or how familiar are them with standard concepts of software engineering. The             
complete list of questions as well as the answers are available online at:             
https://github.com/utfpr/NamingThePain​. 

One question that emerged from our survey that was not fully explored is related to the                
main problems (or the so called “pains”) that scientific software developers face when             
developing scientific software. Although our study shed some initial light along this            
direction (e.g., we found that cross-​platform compatibility, poor software documentation,          
and lack of formal reward system play a role), we argue that this question deserves an                
in-depth investigation, in particular, due to the unique challenges that pertain to this             
community, such as the lack of software development expertise, the inherent complexity            
of the domain, and the (current) intrinsic presence of social platforms.  

Inspired by the naming the pain initiative​5​, we conducted a comprehensive qualitative            
study built upon selected results from our previous survey​4​. This paper goes beyond the              
existing literature​3,6,7 by (1) providing an extensive categorization of the problems (e.g.,            
some problems are known but the big picture was unknown) and, more importantly, (2)              
quantifying the phenomenon (e.g., it is not clear which technical problems are the most              
frequent ones). Our taxonomy is presented throughout Section 3. After describing the            
pains, we discuss potential remedies for them at Section 4. We also relate this work to                
relevant related work at Section 5. 

2. Who is the Scientific Software Developer? 
In a previous work we conducted a survey with 1,577 scientists that develop R packages​4​.               
This sample corresponds to 25% of the R developers that have at least one software               
package published at CRAN. Although one might argue that not all R developers develop              
scientific software, in our invitation email, we kindly ask the participants that do not              
consider themselves as scientists not to answer the questionnaire.  

Among the 1,577 respondents, 88% are male, 45% have between 30–40 years (24%             
have between 18–30, 4% have over 60), and 49% are in Europe (34% in North America,                
6% in Asia, 6% in South America, 4% in Oceania, 0.5% in Africa, and 0.5% in Central                 
America). Regarding their academic degrees, 80% are working towards (or have already            
received) their PhD (15% have a master’s degree). Moreover, 64% of the respondents are              
academic researchers (e.g., professors or postdocs), 20% are software engineers, 15% are            
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graduate students, 10% are lecturers, 9% are industrial research scientists (whereas           
another 8% are government research scientists). They work in a variety of fields:             
Agriculture (0.6%), Biology (8.2%), Biochemistry (0.2%), Bioinformatics (2.1%),        
Biostatistics (3.7%), Chemistry (1.7%), Computer Science (8.6%), Data Science (1.6%),          
Ecology (7.7%), Economy (4.6%), Education (1.0%), Electrical Engineering (0.6%),         
Engineering (1.7%), Environmental Sciences (1.2%), Genetics (2.1%), Geography        
(3.9%), Linguistics (1.0%), Mathematics (6.6%), MBA (0.1%), Mechanical Engineering         
(0.3%), Medical (4.4%), Neuro and Cognitive Science (0.7%), Physics (3.0%), Political           
Science (1.6%), Psychology (3.8%), Science (0.5%), Sociology (1.3%), Statistics         
(23.7%), Zoology (0.6%), and Other (1.6%). 

When it comes to the presence in social coding platforms, we found that 45% of them                
have GitHub profiles. According to popularity metrics, their packages are not very            
popular; the median values for the number of contributors, the number of stars, and the               
number of forks is, respectively, 2, 2, and 1. This does not mean, however, that they are                 
not used. Indeed, most of these packages could be downloaded and installed through             
CRAN (R package manager)​7​. 

3. Naming the pain 
In our survey, we asked our participants questions about their education, their work             
habits, their needs and challenges. In this paper, we focus our attention in one question               
that was not properly explored: “​What are the three most pressing problems, challenges,             
issues, irritations, or other “pain points​” ​you encounter when developing scientific           
software for your own research or for others?​”. This was an optional open question, and               
as the question title might indicate, more than one problem could be reported per user. A                
total of 1,121 respondents answered this question, and a total of 2,110 pains were              
reported.  

We coded all responses to identify patterns (e.g., similarities and differences) that            
describe the phenomenon under study. The coding process was conducted by two authors             
that analyzed each response individually. The analysis was followed by conflict           
resolution meetings to reach consensus. We used coding guidelines provided by Merriam​8            
and Seaman​9 to code, categorize, and synthesize data. After this procedure, we observed             
that the main categories of problems are related to three broad groups: (1)             
technical-related problems, (2) social-related problems, and (3) scientific-related        
problems. We provide discussions accordingly. ​Throughout the following sections, we          
chose quoted the most representative answers. Still, although some quotes have typos, we             
decide to keep them in order to make the answers more trustworthy. 

3.1 Technical-related problems 
Technical-related problems are by far the most common problems that our scientific            
software developers face. As Figure 1 shows, technical-related problems represent more           
than 70% of the overall set of problems. The percentages represent the share of              
respondents that mentioned each pain. 

According to our respondents, ​Software Requirements and Management is the          
software engineering discipline that most hurts scientific developers (they account for           
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23% of the technical problems reported). Problems related to the evolution of ​Functional             
Requirements (e.g., “​The objective changes after having worked on it for months​”) was             
cited by many respondents. Moreover, in spite of its importance, we perceived that             
writing a good ​Documentation also poses a major issue. For instance, one respondent             
mentioned that “​I work with biologists that have little knowledge of programming.            
Therefore, the software must be easy to use. Write a clear documentation is always a               
challenge​”. ​Documentation issues are 8.7% of the total problems raised by the            
respondents, considering the technical, social and scientific-related problems group. 

 

FIGURE 1. Technical-related problems 

 
Scientic developers also face a hard time when conducting ​Software Testing and            

Debugging activities, which represents more than 14% of the total pains presented. This             
is particularly relevant due to the intrinsic non-deterministic nature of exploring research            
questions, as one respondent mentioned: “​It’s frequently difficult to test scientic           
software, since you might not even know in advance what the answer should be​”. As a                
consequence, software development best practices such as Test-Driven Development are          
much harder to be introduced. Despite this grin scenario, a well-tested scientic software             
seems to be crucial for their scientic work, as one respondent revealed: “​testing have to               
be rigorous to publish the work in a scientic journal​”. Overall, problems related to              
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Software Requirements & Management and ​Software Testing & Debugging account          
for more than 30% of the total problems reported by our respondents. 

Participants in our survey also pointed several issues in the ​Software Building and             
Release Engineering ​category. In particular, ​Dependency Management appeared as one          
third of the pains in this group. Developers complain about the complexity to keep up               
with package evolution (“​Software become obsolete quickly in research. Managing          
dependencies on other software can be difficult due to poor packaging​”; “​Hard-to-install            
dependencies, obscure packages that are related to what one is doing but were last              
updated many years ago and now won’t just work out-of-the-box​”). These issues affect             
directly the software development, and although out of the developers’ control, broken            
packages and dependencies bring frustration to the process. Such issues are closely            
related to the poor use of version control and the absence of proper documentation during               
development.  

Finally, the ​Other category groups pains associated with, for instance, the lack of             
programming background (e.g., “​not having a software development background (i.e.:          
learning on the y)​”), the algorithms’ performance (e.g., “​optimizing code that is not             
running fast enough (pure engineering issue)​”), and the user experience (e.g.,           
“​anticipating user behavior and designing [a good] user interface​”). Note that, problems            
regarding ​Programming Background and software ​Performance represent more than         
9% of the total problems cited.  

Although it is out of the scope of this work to understand why some problems are                
more frequently reported than other, this overwhelming presence of technical problems           
could be in part justied by the low number of respondents with Computer Science              
background (around 3%). More research is needed to understand the impact of the lack of               
CS background might have on how scientic developers face daily software engineering            
challenges. 

3.2 Social-related problems 
Social-related problems are well-known from developers​10​. These problems are no          
exception in the scientic software development domain. As Figure 2 shows,           
social-related problems are responsible for 23.9% of the associated pains. First and            
foremost, ​Lack of time was the most reported pain (e.g., “​time to maintain all the               
packages that I’ve written and keep them up-to-date​”). Developers’ lack of time            
represents more than 11% of the total problems presented in our survey. Similar to the               
Lack of time​, pains related to ​Publicity were also mentioned. As an example​, one              
respondent mentioned that “​publishing norms make it hard to get the same credit for              
writing a software package that you would for a publication. Software packages are often              
not cited by researchers using them​”, even though initiatives exist, such as the Journal of               
Open Source Software. We also found that ​Emotional aspects, such as the lack of              
recognition, play a role. Our respondents shared the impression that “​the development of             
a scientic software is not recognized as a scientic achievement​”, which might hinder             
the long-term contribution to scientic software projects. 

Still, our respondents perceived some ​Communication and Collaboration pains. One          
respondent summarized this pain as “​the absence of a collaborative scientic           
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programming community (e.g., for hackathons, co-teaching/co-learning, etc.)​”,       
evidencing an ample opportunity for fostering the development of scientic software.           
Finally, we observed pains related to the ​Lack of support​: for instance, one respondent              
said that there is a “​Lack of feedback because the user base is so small​”. Along these                 
lines, the complexity to ​use the software was also noted as a pain. Some respondents also                
mentioned that users do not always have the expertise required to install or use the               
software (e.g., “​Installation and compatibility of software parts and keeping up to date             
with their recent versions​”). This particular nding corroborates on the importance of            
writing good documentation for scientic software projects. 
 

FIGURE 2. Social-related problems 

 

3.2 Scientific-related problems 
Figure 3 presents the scientic-related problems. The problems mentioned in this           
category are responsible for 5.3% of the pains described by scientic developers. In the              
center of scientic-related problems there are ​Data Handling pains. For instance, one            
respondent mentioned that “​poorly implemented community data standards (overly         
complex) and/or arbitrary design standards​” makes the data handling process painful.           
Other ​Data Handling issues were found, such as Data quality, Data management, Big             
Data, and Data privacy. One of the respondents argued that “​dealing with incomplete             
data, nding optimal default parameters, handling large datasets​” and “​the difficulty to            
share data​” are also difficulties that scientic software developers suffer.  

Moreover, although scientists have been advocating in favor of ​Reproducibility along           
the last decades, we observed that many respondents still perceive it as a common pain               
both on experiments and on source code. For instance, one respondent mentioned that             
“​colleagues write outrageous code and do not care about the reproducibility of their             
results​”, which could introduce some threats in their research. Another pain point are             
related to the difficulty to dene the correct ​Scope (e.g., “​gure out what exactly the               
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scope of the software should be​”) and the mismatch between ​Background skills (e.g.,             
“​mathematical methods to be implemented​”) and coding skills that are needed to conduct             
scientic work. 

FIGURE 3. Scientific-related problems 

 

4. Remedying the pain 
The problems reported in the last sections would require an extensive, collaborative, and             
long term effort to remedy them. Since nding solutions to these problems is not the               
focus of this paper, we dedicate this section to inform the reader about signicant work               
done along these lines.  

Generally speaking, there are two guidelines that might help scientic developers to            
remedy those pains​11,12​. First, Wilson and colleagues​11 described a set of 24            
recommendations linked to advanced practices at Software Carpentry        
(http://software-carpentry.org). Among the recommendations, there are (1) adopting a         
version control system, (2) turning bugs into test cases, or (3) making code style and               
formatting consistent. The authors suggest that the effort of implementing such           
recommendations is almost immediately offset by the productivity gains in productivity           
of the programmers involved. However, most of these recommendations are related to            
Technical problems​; more attention should be given to ​Social problems and ​Scientic            
problems​. Moreover, some well-known software development best practices do not          
properly t in the scientic software domain. This is particularly the case of techniques              
such as test coverage and continuous integration, which require the program under            
development to have deterministic outputs. Other best practices such as code reviews,            
pair programming, or performance tuning are also challenging to translate to the scientic             
domain.  

More recently, Wilson et al.​12 outlined a series of practices for scientic computing             
based on their collective experience. In this work the authors included a specic section              
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for improving their scientic collaboration. Among the strategies, the authors suggest to            
(1) create a “TODO-LIST” using an issue tracker system, (2) create an overview             
description about the project, or (3) highlight the importance of publicize the scientic             
project to attract new collaborators. These suggestions might be useful to remedy ​Social             
problems such as the ones grouped under Communication and Collaboration. Regarding           
the ​Lack of Time pain, Wilson and colleagues​11,12 suggest that improving scientists            
productivity — through training or following the set of recommendations — can alleviate             
this pain, since the research can become more reproducible and, consequently, more            
easily used by others.  

Despite these important recommendations, according to our respondents, there are          
still gaps that ought to be better investigated. For instance, since Handling Data is the               
most common ​Scientic problem​, one might expect collaborative programming         
environments (for non-experienced programmers) that could easily       
import/export/visualize data becoming widespread (which unfortunately is not yet the          
case). Similarly, since Reproducibility is still a recurring pain, existing collaborative           
programming environments could provide a scaffold for reproducibility, for instance,          
exporting build les in a human readable fashion or using state to the practice tools such                
as docker. 

5. Relating the Findings 
Although related work sheds an initial light on software development pains that affect             
scientists, they (1) do not provide a comprehensive categorization of the problems that             
scientic developers face (e.g., even though some problems are known, the big picture is              
unknown) and (2) do not quantify the phenomenon (e.g., it is not clear which technical               
problems were the most frequent ones). To better place this work in relation with the               
replication previously published​4 and the original study conducted in 2009​3​, the main            
results of both analyses are summarized at Table 1. 

As we can see, this work not only revisited traditional issues such as reproducibility,              
but also piled evidence of previous findings (e.g., major challenges with software testing             
were discussed by both Hannay​3 and Pinto​4​), and still highlighted additional pain points             
that were previously unknown in the scientifics software development arena (e.g.,           
emotional issues such as Ego and Recognition). Moreover, both social and scientic pain             
points (which together correspond to about 30% of the named pains) were not well              
addressed previously. Based on our ndings, we expect more research on the social side              
of scientic software development. 

TABLE 1. Relating the Findings 

Problems This Paper Replication paper​5 Original paper​3 

Technical problems 

A total of seven groups 
of problems (with 32 
sub-problems) were 
found. Software 
Requirements & 
Management were the 
most common ones. 

Four technical problems 
were presented: the 
“Cross-platform 
compatibility”, “Poor 
software 
documentation”, “Scope 
bloat”, “Mismatch 

Only software testing 
and verification were 
mentioned as 
challenging for scientic 
software developers. 
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Documentation, in 
particular, was 
perceived as the most 
painful software 
development activity. 
Software testing and 
debugging next. 
Software build and 
release engineering 
also. 

between coding skills 
and subject-matter 
skills”. The lack of 
technical skills was also 
observed. 

Social problems 

A total of ve groups of 
problems (with 13 
sub-problems) were 
found. Problems with 
time, collaboration, and 
recognition appears 
more frequently. The 
lack of training, 
nevertheless, was not 
frequently reported. 

Five social problems 
were presented: the 
“Hard to collaborate on 
software projects” pain, 
the “aloneness” pain, 
the “Interruptions while 
coding” pain, the “Lack 
of time”, and the “Lack 
of user feedback. 

No mention. 

Scientific problems 

A total of four groups of 
problems (with 13 
sub-problems) were 
found. Problems with 
data (e.g., management, 
privacy, visualization, 
etc.) are by far the most 
common ones. Dening 
the scope as well as 
reproducibility issues 
are also common. 

Only one scientic 
problem was mentioned: 
the “Lack of formal 
reward system” one. 

No mention. 
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