
Naming the Pain in Developing Scientific
Software
Igor Wiese, ​Federal University of Technology - Paraná

Ivanilton Polato, ​Federal University of Technology - Paraná

Gustavo Pinto, ​Federal University of Pará, Brazil

ABSTRACT. The scientific software community is eagerly embracing software
development practices and tools. However, the lack of Computer
Science background, in general, and Software Engineering training, in
particular, pose a toll on scientists that need to develop software.
Although some of the problems that scientific software developers face
when developing scientific software are already known in the literature,
we believe that a comprehensive characterization of this complex
landscape is still missing. In this paper we build a taxonomy of 2,110
problems (the so called “pains”) reported by 1,577 scientific software
developers. These problems are grouped into three major axes:
technical-related, social-related, and scientific-related problems. Our
report helps to better understand the needs and challenges of this so far
not fully understood community.

KEYWORDS. Scientific Software Development; Pain points; Survey.

1. Introduction
In the big data era, in which samples of data can easily scale to many orders of
magnitude, manual data analysis is rather unfeasible. Sophisticated data analysis,
therefore, depends on chains of computer programs that generate, clean up, augment,
plot, and run statistical models on data. The need of specialized software tooling is
imperative to scientists conduct their work. However, efficient, scalable, and reliable
software solutions for scientific research are challenged by (1) the frequent and
unforeseen changes in requirements, (2) the need for both highly specialized domain
knowledge and programming expertise, and (3) the extremely complex patterns of
communication on perpetually novel architectures​1​. In addition, such specialized tooling,
if existing, is often hidden in research laboratories and universities. Research prototypes
that usually serve only the purpose of validating an idea are not uncommon as well.

Although the goal of scientists is to do science, not to develop software​1,2,3​, due to the
lack of specialized tools, many scientists have no option other than acquiring software
development skills and develop their own software. However, many challenges might be
hidden in this activity. For instance, since most scientific software packages begin as
small projects intended for internal use by a research team, one challenge resides when
moving from a one-person project into a production-ready software intended for general

1

use​2​. ​Another challenge is related to the need of getting acquainted with the software
engineering arsenal (e.g., process, practices, techniques and tools) required to build
software.

While previous work shed some light on how scientists develop software​3​, given the
fundamental changes in the software development practices in the last few years (e.g., the
introduction of social coding websites and the prevalence of online learning platforms),
little is known about the current state-of-the-practice of scientific software development.
In a recent replication study​4​, we deployed an online survey to ​1,577 R Developers that
have published at least one R package. We used this population of R Developers as a
proxy for scientific software developers. As we shall see in Section 2, our respondents
work on a myriad of research fields, including chemistry, physics, and biology. In our
questionnaire, we asked them questions about how they learn developing scientific
software, or how familiar are them with standard concepts of software engineering. The
complete list of questions as well as the answers are available online at:
https://github.com/utfpr/NamingThePain​.

One question that emerged from our survey that was not fully explored is related to the
main problems (or the so called “pains”) that scientific software developers face when
developing scientific software. Although our study shed some initial light along this
direction (e.g., we found that cross-​platform compatibility, poor software documentation,
and lack of formal reward system play a role), we argue that this question deserves an
in-depth investigation, in particular, due to the unique challenges that pertain to this
community, such as the lack of software development expertise, the inherent complexity
of the domain, and the (current) intrinsic presence of social platforms.

Inspired by the naming the pain initiative​5​, we conducted a comprehensive qualitative
study built upon selected results from our previous survey​4​. This paper goes beyond the
existing literature​3,6,7 by (1) providing an extensive categorization of the problems (e.g.,
some problems are known but the big picture was unknown) and, more importantly, (2)
quantifying the phenomenon (e.g., it is not clear which technical problems are the most
frequent ones). Our taxonomy is presented throughout Section 3. After describing the
pains, we discuss potential remedies for them at Section 4. We also relate this work to
relevant related work at Section 5.

2. Who is the Scientific Software Developer?
In a previous work we conducted a survey with 1,577 scientists that develop R packages​4​.
This sample corresponds to 25% of the R developers that have at least one software
package published at CRAN. Although one might argue that not all R developers develop
scientific software, in our invitation email, we kindly ask the participants that do not
consider themselves as scientists not to answer the questionnaire.

Among the 1,577 respondents, 88% are male, 45% have between 30–40 years (24%
have between 18–30, 4% have over 60), and 49% are in Europe (34% in North America,
6% in Asia, 6% in South America, 4% in Oceania, 0.5% in Africa, and 0.5% in Central
America). Regarding their academic degrees, 80% are working towards (or have already
received) their PhD (15% have a master’s degree). Moreover, 64% of the respondents are
academic researchers (e.g., professors or postdocs), 20% are software engineers, 15% are

2

https://github.com/utfpr/NamingThePain

graduate students, 10% are lecturers, 9% are industrial research scientists (whereas
another 8% are government research scientists). They work in a variety of fields:
Agriculture (0.6%), Biology (8.2%), Biochemistry (0.2%), Bioinformatics (2.1%),
Biostatistics (3.7%), Chemistry (1.7%), Computer Science (8.6%), Data Science (1.6%),
Ecology (7.7%), Economy (4.6%), Education (1.0%), Electrical Engineering (0.6%),
Engineering (1.7%), Environmental Sciences (1.2%), Genetics (2.1%), Geography
(3.9%), Linguistics (1.0%), Mathematics (6.6%), MBA (0.1%), Mechanical Engineering
(0.3%), Medical (4.4%), Neuro and Cognitive Science (0.7%), Physics (3.0%), Political
Science (1.6%), Psychology (3.8%), Science (0.5%), Sociology (1.3%), Statistics
(23.7%), Zoology (0.6%), and Other (1.6%).

When it comes to the presence in social coding platforms, we found that 45% of them
have GitHub profiles. According to popularity metrics, their packages are not very
popular; the median values for the number of contributors, the number of stars, and the
number of forks is, respectively, 2, 2, and 1. This does not mean, however, that they are
not used. Indeed, most of these packages could be downloaded and installed through
CRAN (R package manager)​7​.

3. Naming the pain
In our survey, we asked our participants questions about their education, their work
habits, their needs and challenges. In this paper, we focus our attention in one question
that was not properly explored: “​What are the three most pressing problems, challenges,
issues, irritations, or other “pain points​” ​you encounter when developing scientific
software for your own research or for others?​”. This was an optional open question, and
as the question title might indicate, more than one problem could be reported per user. A
total of 1,121 respondents answered this question, and a total of 2,110 pains were
reported.

We coded all responses to identify patterns (e.g., similarities and differences) that
describe the phenomenon under study. The coding process was conducted by two authors
that analyzed each response individually. The analysis was followed by conflict
resolution meetings to reach consensus. We used coding guidelines provided by Merriam​8
and Seaman​9 to code, categorize, and synthesize data. After this procedure, we observed
that the main categories of problems are related to three broad groups: (1)
technical-related problems, (2) social-related problems, and (3) scientific-related
problems. We provide discussions accordingly. ​Throughout the following sections, we
chose quoted the most representative answers. Still, although some quotes have typos, we
decide to keep them in order to make the answers more trustworthy.

3.1 Technical-related problems
Technical-related problems are by far the most common problems that our scientific
software developers face. As Figure 1 shows, technical-related problems represent more
than 70% of the overall set of problems. The percentages represent the share of
respondents that mentioned each pain.

According to our respondents, ​Software Requirements and Management is the
software engineering discipline that most hurts scientific developers (they account for

3

23% of the technical problems reported). Problems related to the evolution of ​Functional
Requirements (e.g., “​The objective changes after having worked on it for months​”) was
cited by many respondents. Moreover, in spite of its importance, we perceived that
writing a good ​Documentation also poses a major issue. For instance, one respondent
mentioned that “​I work with biologists that have little knowledge of programming.
Therefore, the software must be easy to use. Write a clear documentation is always a
challenge​”. ​Documentation issues are 8.7% of the total problems raised by the
respondents, considering the technical, social and scientific-related problems group.

FIGURE 1. Technical-related problems

Scientic developers also face a hard time when conducting ​Software Testing and

Debugging activities, which represents more than 14% of the total pains presented. This
is particularly relevant due to the intrinsic non-deterministic nature of exploring research
questions, as one respondent mentioned: “​It’s frequently difficult to test scientic
software, since you might not even know in advance what the answer should be​”. As a
consequence, software development best practices such as Test-Driven Development are
much harder to be introduced. Despite this grin scenario, a well-tested scientic software
seems to be crucial for their scientic work, as one respondent revealed: “​testing have to
be rigorous to publish the work in a scientic journal​”. Overall, problems related to

4

Software Requirements & Management and ​Software Testing & Debugging account
for more than 30% of the total problems reported by our respondents.

Participants in our survey also pointed several issues in the ​Software Building and
Release Engineering ​category. In particular, ​Dependency Management appeared as one
third of the pains in this group. Developers complain about the complexity to keep up
with package evolution (“​Software become obsolete quickly in research. Managing
dependencies on other software can be difficult due to poor packaging​”; “​Hard-to-install
dependencies, obscure packages that are related to what one is doing but were last
updated many years ago and now won’t just work out-of-the-box​”). These issues affect
directly the software development, and although out of the developers’ control, broken
packages and dependencies bring frustration to the process. Such issues are closely
related to the poor use of version control and the absence of proper documentation during
development.

Finally, the ​Other category groups pains associated with, for instance, the lack of
programming background (e.g., “​not having a software development background (i.e.:
learning on the y)​”), the algorithms’ performance (e.g., “​optimizing code that is not
running fast enough (pure engineering issue)​”), and the user experience (e.g.,
“​anticipating user behavior and designing [a good] user interface​”). Note that, problems
regarding ​Programming Background and software ​Performance represent more than
9% of the total problems cited.

Although it is out of the scope of this work to understand why some problems are
more frequently reported than other, this overwhelming presence of technical problems
could be in part justied by the low number of respondents with Computer Science
background (around 3%). More research is needed to understand the impact of the lack of
CS background might have on how scientic developers face daily software engineering
challenges.

3.2 Social-related problems
Social-related problems are well-known from developers​10​. These problems are no
exception in the scientic software development domain. As Figure 2 shows,
social-related problems are responsible for 23.9% of the associated pains. First and
foremost, ​Lack of time was the most reported pain (e.g., “​time to maintain all the
packages that I’ve written and keep them up-to-date​”). Developers’ lack of time
represents more than 11% of the total problems presented in our survey. Similar to the
Lack of time​, pains related to ​Publicity were also mentioned. As an example​, one
respondent mentioned that “​publishing norms make it hard to get the same credit for
writing a software package that you would for a publication. Software packages are often
not cited by researchers using them​”, even though initiatives exist, such as the Journal of
Open Source Software. We also found that ​Emotional aspects, such as the lack of
recognition, play a role. Our respondents shared the impression that “​the development of
a scientic software is not recognized as a scientic achievement​”, which might hinder
the long-term contribution to scientic software projects.

Still, our respondents perceived some ​Communication and Collaboration pains. One
respondent summarized this pain as “​the absence of a collaborative scientic

5

programming community (e.g., for hackathons, co-teaching/co-learning, etc.)​”,
evidencing an ample opportunity for fostering the development of scientic software.
Finally, we observed pains related to the ​Lack of support​: for instance, one respondent
said that there is a “​Lack of feedback because the user base is so small​”. Along these
lines, the complexity to ​use the software was also noted as a pain. Some respondents also
mentioned that users do not always have the expertise required to install or use the
software (e.g., “​Installation and compatibility of software parts and keeping up to date
with their recent versions​”). This particular nding corroborates on the importance of
writing good documentation for scientic software projects.

FIGURE 2. Social-related problems

3.2 Scientific-related problems
Figure 3 presents the scientic-related problems. The problems mentioned in this
category are responsible for 5.3% of the pains described by scientic developers. In the
center of scientic-related problems there are ​Data Handling pains. For instance, one
respondent mentioned that “​poorly implemented community data standards (overly
complex) and/or arbitrary design standards​” makes the data handling process painful.
Other ​Data Handling issues were found, such as Data quality, Data management, Big
Data, and Data privacy. One of the respondents argued that “​dealing with incomplete
data, nding optimal default parameters, handling large datasets​” and “​the difficulty to
share data​” are also difficulties that scientic software developers suffer.

Moreover, although scientists have been advocating in favor of ​Reproducibility along
the last decades, we observed that many respondents still perceive it as a common pain
both on experiments and on source code. For instance, one respondent mentioned that
“​colleagues write outrageous code and do not care about the reproducibility of their
results​”, which could introduce some threats in their research. Another pain point are
related to the difficulty to dene the correct ​Scope (e.g., “​gure out what exactly the

6

scope of the software should be​”) and the mismatch between ​Background skills (e.g.,
“​mathematical methods to be implemented​”) and coding skills that are needed to conduct
scientic work.

FIGURE 3. Scientific-related problems

4. Remedying the pain
The problems reported in the last sections would require an extensive, collaborative, and
long term effort to remedy them. Since nding solutions to these problems is not the
focus of this paper, we dedicate this section to inform the reader about signicant work
done along these lines.

Generally speaking, there are two guidelines that might help scientic developers to
remedy those pains​11,12​. First, Wilson and colleagues​11 described a set of 24
recommendations linked to advanced practices at Software Carpentry
(http://software-carpentry.org). Among the recommendations, there are (1) adopting a
version control system, (2) turning bugs into test cases, or (3) making code style and
formatting consistent. The authors suggest that the effort of implementing such
recommendations is almost immediately offset by the productivity gains in productivity
of the programmers involved. However, most of these recommendations are related to
Technical problems​; more attention should be given to ​Social problems and ​Scientic
problems​. Moreover, some well-known software development best practices do not
properly t in the scientic software domain. This is particularly the case of techniques
such as test coverage and continuous integration, which require the program under
development to have deterministic outputs. Other best practices such as code reviews,
pair programming, or performance tuning are also challenging to translate to the scientic
domain.

More recently, Wilson et al.​12 outlined a series of practices for scientic computing
based on their collective experience. In this work the authors included a specic section

7

for improving their scientic collaboration. Among the strategies, the authors suggest to
(1) create a “TODO-LIST” using an issue tracker system, (2) create an overview
description about the project, or (3) highlight the importance of publicize the scientic
project to attract new collaborators. These suggestions might be useful to remedy ​Social
problems such as the ones grouped under Communication and Collaboration. Regarding
the ​Lack of Time pain, Wilson and colleagues​11,12 suggest that improving scientists
productivity — through training or following the set of recommendations — can alleviate
this pain, since the research can become more reproducible and, consequently, more
easily used by others.

Despite these important recommendations, according to our respondents, there are
still gaps that ought to be better investigated. For instance, since Handling Data is the
most common ​Scientic problem​, one might expect collaborative programming
environments (for non-experienced programmers) that could easily
import/export/visualize data becoming widespread (which unfortunately is not yet the
case). Similarly, since Reproducibility is still a recurring pain, existing collaborative
programming environments could provide a scaffold for reproducibility, for instance,
exporting build les in a human readable fashion or using state to the practice tools such
as docker.

5. Relating the Findings
Although related work sheds an initial light on software development pains that affect
scientists, they (1) do not provide a comprehensive categorization of the problems that
scientic developers face (e.g., even though some problems are known, the big picture is
unknown) and (2) do not quantify the phenomenon (e.g., it is not clear which technical
problems were the most frequent ones). To better place this work in relation with the
replication previously published​4 and the original study conducted in 2009​3​, the main
results of both analyses are summarized at Table 1.

As we can see, this work not only revisited traditional issues such as reproducibility,
but also piled evidence of previous findings (e.g., major challenges with software testing
were discussed by both Hannay​3 and Pinto​4​), and still highlighted additional pain points
that were previously unknown in the scientifics software development arena (e.g.,
emotional issues such as Ego and Recognition). Moreover, both social and scientic pain
points (which together correspond to about 30% of the named pains) were not well
addressed previously. Based on our ndings, we expect more research on the social side
of scientic software development.

TABLE 1. Relating the Findings

Problems This Paper Replication paper​5 Original paper​3

Technical problems

A total of seven groups
of problems (with 32
sub-problems) were
found. Software
Requirements &
Management were the
most common ones.

Four technical problems
were presented: the
“Cross-platform
compatibility”, “Poor
software
documentation”, “Scope
bloat”, “Mismatch

Only software testing
and verification were
mentioned as
challenging for scientic
software developers.

8

Documentation, in
particular, was
perceived as the most
painful software
development activity.
Software testing and
debugging next.
Software build and
release engineering
also.

between coding skills
and subject-matter
skills”. The lack of
technical skills was also
observed.

Social problems

A total of ve groups of
problems (with 13
sub-problems) were
found. Problems with
time, collaboration, and
recognition appears
more frequently. The
lack of training,
nevertheless, was not
frequently reported.

Five social problems
were presented: the
“Hard to collaborate on
software projects” pain,
the “aloneness” pain,
the “Interruptions while
coding” pain, the “Lack
of time”, and the “Lack
of user feedback.

No mention.

Scientific problems

A total of four groups of
problems (with 13
sub-problems) were
found. Problems with
data (e.g., management,
privacy, visualization,
etc.) are by far the most
common ones. Dening
the scope as well as
reproducibility issues
are also common.

Only one scientic
problem was mentioned:
the “Lack of formal
reward system” one.

No mention.

References
1. J. C Carver. Software engineering for Science. Computing in Science & Engineering, 18(2):4–5,

2016.

2. V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull, and M. V.
Zelkowitz. Understanding the high performance-computing community: A software engineer’s
perspective. IEEE Softw., 25(4):29–36, July 2008.

3. J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson. How do
scientists develop and use scientic software? In Workshop on Software Engineering for
Computational Science and Engineering, SECSE ’09, 2009.

4. G. Pinto, I. Wiese, and L. F. Dias. How do scientists develop scientic software? an external
replication. In International Conference on Software Analysis, Evolution and Reengineering,
SANER, 2018.

5. D. M. Fernandez, S. Wagner, M. Kalinowski, A. Schekelmann, A. Tuzcu, T. Conte, R. Spinola,
and R. Prikladnicki. Naming the pain in requirements engineering: Comparing practices in brazil
and germany. IEEE Software, 32(5):16–23, Sept 2015.

6. J. C Carver. Towards reporting guidelines for experimental replications: A proposal. In

9

Proceedings of the 1st International Workshop on Replication in Empirical Software Engineering
Research (RESER), 2011.

7. R. Meloca, G. Pinto, L. Baiser, M. Mattos, I. Polato, I. Scaliante Wiese, and D. M. German.
Understanding the usage, impact, and adoption of non-osi approved licenses. In International
Conference on Mining Software Repositories, MSR, 2018

8. S.B. Merriam. Qualitative Research: A Guide to Design and Implementation. Higher and adult
education series. John Wiley & Sons, 2009.

9. C. B. Seaman. Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering, 25(4):557–572, Jul 1999.

10. D. A. Tamburri, P. Lago, and H. van Vliet. Organizational social structures for software
engineering. ACM Computing Survey, 46(1):3:1–3:35, July 2013.

11. G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy, S. H. D. Haddock,
K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson. Best practices
for scientic computing. PLOS Biology, 12(1):1–7, 01 2014.

12. G. Wilson, J. Bryan, K. Cranston, . Kitzes, L. Nederbragt, and T. K. Teal. Good enough practices
in scientic computing. PLOS Computational Biology, 13(6):1–20, 06 2017.

About the authors

Igor Wiese is an associate professor in the Department of Computing at the Federal University of

Technology -- Paraná, Brazil, where he researches Mining Software Repositories techniques, Human
Aspects of Software Engineering and related topics. Wiese received a PhD in computer science from the
University of São Paulo. Contact him at: igor@utfpr.edu.br.

Ivanilton Polato is an associate professor in the Department of Computing at the Federal University of

Technology -- Paraná, Brazil. His research topics are related to Energy Consumption, Green
Computing, Open Source Software and Software Repositories. Polato received a PhD in computer
science from the University of São Paulo. Contact him at: ipolato@utfpr.edu.br.

Gustavo Pinto is an assistant professor of computer science at the Federal University of Pará, Brazil. His

research focuses on the interactions between people and code, spanning the areas of software
engineering and programming languages. Pinto received a PhD from Federal University of
Pernambuco, Brazil. Contact him at: mail@gustavopinto.org

10

