
Mining Rule Violations in JavaScript Code Snippets
Uriel Campos, Guilherme Smethurst, João Pedro Moraes

Federal University of Pará
Belém, Brazil

{urielfcampos95, guitrompa1, joaopedromoraes94}@gmail.com

Rodrigo Bonifácio
University of Brası́lia

Brası́lia, Brazil
rbonifacio@unb.br

Gustavo Pinto
Federal University of Pará

Belém, Brazil
gpinto@ufpa.br

Abstract—Programming code snippets readily available on
platforms such as StackOverflow are undoubtedly useful for
software engineers. Unfortunately, these code snippets might
contain issues such as deprecated, misused, or even buggy code.
These issues could pass unattended, if developers do not have
adequate knowledge, time, or tool support to catch them. In this
work we expand the understanding of such issues (or the so called
“violations”) hidden in code snippets written in JavaScript, the
programming language with the highest number of questions
on StackOverflow. To characterize the violations, we extracted
336k code snippets from answers to JavaScript questions on
StackOverflow and statically analyzed them using ESLinter, a
JavaScript linter. We discovered that there is no single JavaScript
code snippet without a rule violation. On average, our studied
code snippets have 11 violations, but we found instances of more
than 200 violations. In particular, rules related to stylistic issues
are by far the most violated ones (82.9% of the violations pertain
to this category). Possible errors, which developers might be more
interested in, represent only 0.1% of the violations. Finally, we
found a small fraction of code snippets flagged with possible
errors being reused on actual GitHub software projects. Indeed,
one single code snippet with possible errors was reused 1,261
times.

Index Terms—Rule Violations; JavaScript code snippets; ES-
Linter

I. INTRODUCTION

STACKOVERFLOW is the most well-known platform when
it comes to asking and answering questions about computer
programming [1]. Software engineers use STACKOVERFLOW
on regular basis, and the range of questions asked is greatly
diverse, varying from documentation [2], debugging [3], and
even energy consumption [4]. In spite of this mixed landscape,
answers on STACKOVERFLOW arrive in a blink of eyes;
questions are answered in a median time of 11 minutes [5],
[6]. Moreover, only 8% of the questions are left without
an answer [5]. This reputation made STACKOVERFLOW an
important place to go when developers are in stuck on a
programming task, in doubt about the best solution, or even
for learning purposes.

Indeed, software engineers take the answers suggested in
the questions asked at STACKOVERFLOW seriously. As indi-
cated in another study [7], developers tend to reuse verbatim
copies or near verbatim copies of code snippets from STACK-
OVERFLOW. In particular, 20% of the code snippets from
STACKOVERFLOW used on GITHUB are employed without
any modification. However, the ready use of code snippets
from STACKOVERFLOW might hidden several concerns. For

instance, the code snippets could be deprecated [8], mis-
used [9], or even security flaws [10]. Software engineers
under time pressure have little chance to thoroughly distill
the code snippets they borrow from STACKOVERFLOW, which
may have the potential of scattering such “low quality code
snippets” over their software applications.

The ultimate goal of this work is to expand the under-
standing of the quality of STACKOVERFLOW code snippets. In
particular, this work focuses on violations on JavaScript code
snippets. We focus on JavaScript due to at least three important
reasons: first, it is the de facto programming language for the
web; second, it is the programming language with the highest
number of questions tagged on STACKOVERFLOW; third, 65%
JavaScript code snippets on STACKOVERFLOW are parsable
and runnable [11], which makes them particularly attractive
to be reused in practice.

To find JavaScript code snippets, we took advantage of
SOTORRENT [12], a dataset that curates the extraction and
the evolution of STACKOVERFLOW code snippets. Through an
automated process, we extracted 336k JavaScript code snippets
for analysis. We relied on ESLINT1, an open source linter, to
analyze the JavaScript source code and to flag programming
errors, bugs, and stylistic coding standards. The main findings
of this study include:

• We observed that violations are pervasive in our dataset
of JavaScript code snippets. No single code snippet is
free of violations. On average, our code snippets have
11.9 violations.

• We categorized the violations in terms of five rules
employed by ESLINT, namely: Possible Errors, Best
Practices, Variables, Stylistic Issues, ECMAScript, and
Node.js and CommonJs. Stylistic Issues account for
82.9% of the overall violations. Possible Errors, which
developers might be more interested in, represent 0.1%
of the violations.

• We found that only 36 code snippets out of the 6,303 ones
with potential errors being reused on GITHUB software
projects. A total of 2,092 projects reuse these code snip-
pets. However, only three code snippets are responsible
for 94% of the overall reuse.

1https://eslint.org/

https://eslint.org/

II. BACKGROUND ON ESLINT

Different than full-fledged static analysis tools such as ES-
C/Java [13] or FindBugs [14], linters are a kind of lightweight
static analysis tools that employ relatively simple analysis
to flag non-complex programming errors, best practices, and
stylistic coding standards. Several linters have been introduced
for a variety of programming languages. This work is based
on ESLINT, the most downloaded and used JavaScript linter.
By way of contrast to ESC/Java [13] and FindBugs [14], that
leverage sophisticated techniques such as theorem proving and
dataflow analysis to find bugs, respectively, ESLINT relies on
an Abstract Syntax Tree (AST) search. ESLINT searches for
code patterns (e.g., possible code errors or violations to coding
standards) in the nodes of the AST tree. ESLINT currently
has a catalogue of 253 rules, which are specific code patterns
(e.g., the use of a return statement on getters2) that are
pattern matched in the AST. A violation happens when a rule
is infringed.

III. METHODOLOGY

A. Research Questions

In this work we investigate the following important but
overlooked research questions:
(RQ1) How commonplace are rule violations in JavaScript

code snippets?
(RQ2) What are the most common rules violated in JavaScript

code snippets?
(RQ3) Are JavaScript code snippets flagged with possible

errors being reused in GITHUB projects?
To answer RQ1 we investigate the proportion of code

snippets that contain any kind of rule violations. Our rationale
is that accepted answers to JavaScript questions on STACK-
OVERFLOW might have been thoroughly designed and revised;
then they might be less likely to have rule violations. For RQ2
we distill the occurrences of the violations in terms of the six
categories that we shall see in Section III-C. Finally, for RQ3
we assessed whether violations related to potential errors, the
ones that more interest software engineers [15], are reused in
open source software projects on GITHUB.

B. Curating the dataset

We started by selecting the questions tagged with JavaScript
on StackOverflow. In our query, we placed two particular
restrictions:

1) The questions should have an accepted answer, and
2) The accepted answer should have a code snippet.
When analyzing the code snippets, we perceived that some

of them did not have a valid JavaScript source code (e.g., some
of them have only HTML elements). In a manual investigation
of a random set of code snippets, we noted that the ones
that are not related to JavaScript were usually the ones with
the fewer lines of code. We then decided to introduce an
additional filter to remove code snippets smaller than 10 lines

2https://eslint.org/docs/rules/getter-return

of code (LOC). This number was chosen after noticing that,
on average, the selected code snippets have 7.2 lines of code
(1st Quartile: 1 LOC, median: 4 LOC, 3rd Quartile: 8 LOC,
max: 410 LOC).

Moreover, one interesting characteristics of the SOTOR-
RENT database is that it also keeps track of the evolution of
the code snippets. This feature happens to introduce several
code snippets duplication in our dataset (i.e., edited version of
the code snippets. To avoid code snippets duplication, in this
study we decided to focus only on the most recent version of
the code snippets. After applying all these filters, we ended
up with 432,146 JavaScript code snippets. When analyzing
these code snippets, we also perceived that some answers have
more than one code snippet. In that case, we merged the code
snippets into a single file. After this procedure, we ended up
with 336,643 code snippets, which comprehends our dataset.

C. Linting the dataset

We ran each one of the JavaScript code snippets using
ESLINT, an open source lint for JavaScript. ESLINT has a
set of rules that are used to assess the code quality attributes
of a given source code. ESLINT implements a total of 253
rules. Rules are grouped by categories, namely:

• Possible Errors: Rules relate to possible syntax or logic
errors in JavaScript code. There are 36 rules available.

• Best Practices: Rules relate to better ways of doing
things to help developers avoid problems. There are 72
rules available.

• Variables: Rules relate to variable declarations. There are
11 rules available.

• Stylistic Issues: Rules relate to style guidelines, and are
therefore quite subjective. There are 91 rules available.

• ECMAScript: Rules relate to ES6, also known as
ES2015. There are 31 rules available.

• Node.js and CommonJS: Rules related to code running
Node.js, or in browsers with CommonJS. There are 11
rules available.

Besides these rules, there are still one Strict Mode rule
(related to strict mode directives), 11 Deprecated rules (rules
have been deprecated in accordance with the deprecation
policy, and replaced by newer rules), and 18 Removed rules
(rules from older versions of ESLINT (before the deprecation
policy existed) have been replaced by newer rules).

In our study, we employed the Standard ESLINT config-
uration. We chose this configuration because it is based on
guidelines curated at https://standardjs.com and implemented
by several linters, including ESLINT. This configuration uses
117 rules (Possible Errors: 25, Best Practices: 36, Variables:
6, Stylistic Issues: 34, ECMAScript6 : 13, Node.js and Com-
monJs: 3). After running the ESLINT locally over the 336k
JavaScript code snippets, we created python scripts to read
and perform analysis over ESLINT output. All data created in
this work is available online for replication purposes3.

3Available at https://github.com/urielfcampos/linting-js-codesnippets

https://eslint.org/docs/rules/getter-return
https://standardjs.com
https://github.com/urielfcampos/linting-js-codesnippets

IV. RESULTS

In this section we present our results grouped by the
research questions.

RQ1. How commonplace are rule violations in JavaScript code
snippets?

When analyzing the presence of violations in our dataset,
our first observation was that just one of the 336,643
studied code snippets was free of violations (stackover-
flow.com/q/51594048). However, a closer look at this par-
ticular code snippet revealed that the author who created
it intentionally suppressed all warnings raised by ESLINT
by commenting the code with the /*eslint-disable*/
instruction. We manually removed this comment and reran
ESLINT on this code snippet. This new execution reported
96 violations. Therefore, the first finding of this work is that
no single code snippets in our dataset was free of violations.
On average, the studied code snippets have 11.94 violations.
Figure 1 shows the distribution of violations in our dataset.

0 50 100 150 200
of Violations

0

50000

100000

150000

200000

#
 o
f
C
o
d
e
 S
n
ip
p
e
ts

Fig. 1. The violations distribution in the code snippets dataset.

As we can see in this figure, the majority of the code
snippets have between one and 50 violations (1st Quartile:
1, median: 9, 3rd Quartile: 20). At one extreme example, one
code snippet violated 53 rules, totalizing 213 violations (the
same rule could be violated more than once). Overall we found
5,587,357 violations. When talking about the number of rules
violated, on average, each code snippet violated five rules (1st
Quartile: 1, median: 4, 3rd Quartile: 8, max: 53).

RQ2. What are the most common rules violated in JavaScript
code snippets?

We now break down the 5,587,357 violation found in terms
of their categories. Figure 2 shows the results.

As we can see, the Stylistic Issues category dominates with
4,632,348 violations (82.9%). It is important to note that, since
we have to merge different code snippets into a single one, we
removed 3,461,739 violations in indentation rules (which fall
in the Stylistic Issues category. Indentation violations were by
far the most common one in our dataset. Following next is the
Variable category, with 787,824 violations (14.1%), then Best
Practices (BP) with 157,578 violations (2.8%), Possible Er-
rors (PE) with 6,303 violations (0.1%), Node.js/Common.js
(N/C.js) with 3,304 violations (0.05%), and ECMAscript 6

BP EC
6

N/
C.
js PE SI Va
r

Rule Categories

103

104

105

106

Nu

m
be

r o
f v

io
la
tio

ns
 (
lo
g
sc
al
e)

Fig. 2. Number of violations per rule category. BP stands for Best Practices,
EC6 stands for ECMAscript 6, N/C.js stands for Node.js/Common.js, PE
stands for Possible Errors, SI stands for Stylistic Issues, and Var stands for
Variable.

(EC6) with 548 violations (0.009%). We now discuss the three
most common violations per category.
Stylistic issues: The three most common violations under this
category are: semi (1,477,808 occurrences), quotes (700,770
occurrences), and no-trailing-spaces (374,012) occurrences).
The semi rule, which requires (or disallows) the use of a
semicolon at the end of each statement, accounts for 32%
of the overall stylistic issues.
Variables: The three most common violations under this
category are related to (1) the use of undeclared variables (no-
undef, with 719,679 occurrences), (2) the presence of unsused
variables (no-unused-vars, with 67,816 occurrences), and (3)
the initialization of variables to undefined (no-undef-init,
with 150 occurrences). As we could see, no-undef concentrate
the variable violations (91% of them).
Best practices: The three most common rules violated under
this category are: the no-multi-spaces rule, that is, the use
of multiple spaces in a row, but not for indentation purposes
(54,768 occurrences), the eqeqeq rule, that is, the use of
regular equality operators == and !=, instead of their type-
safe counterparts === and !== (53,321 occurrences), and the
curly rule, that is, the omission of curly braces when a block
contains only one statement (14,989 occurrences).
Possible Errors: The three most common violations under
this category are: no-irregular-whitespace (2,037 occurrences),
no-cond-assign (910 occurrences), and no-unreachable (485
occurrences). Interestingly, the most common possible error
is using invalid or irregular whitespace (e.g., mixing tabs and
spaces), which have a fairly easy fix: rewrite the line statement
from scratch.
Node.js/Common.js: The three most common violations un-
der this category are: handle-callback-err (2,855 occurrences),
no-path-concat (444 occurrences), and no-new-require (5 oc-
currences).
ECMAscript 6: The three most common violations under
this category are: template-curly-spacing (164 occurrences),
no-useless-constructor (154 occurrences), and no-this-before-
super (88 occurrences).

RQ3. Are JavaScript code snippets flagged with possible errors
being reused in GitHub projects?

In this research questions, we selected only the 6,303 code
snippets that violate at least one of the 25 possible errors
rules. We decided to focus on these kind of code snippets
because they might be the ones that most interest developers,
since they could lead to software errors [15].

We used SOTORRENT to match whether these code snippets
are being used on GITHUB projects. We found 36 JavaScript
code snippets flagged with possible errors (0.11%) being
reused on 2,092 GITHUB projects. One important observation,
however, that due to the forkability characteristics of GITHUB
projects, most of these 2,092 GITHUB projects are actually
fork projects (which might enjoy the same architecture and
file content of the forked project). In fact, only 845 out of the
2,092 GITHUB projects (40%) are non-forks. A similar finding
was reported in another context [10]: a small number of code
snippets are proliferated into thousands of software projects.

When manually analyzing the frequency of use of these 36
code snippets on the GITHUB projects, we perceived that only
three of them are responsible for 94% of the reuse on GITHUB
projects. For instance, the code snippet stackoverflow.com/a/
9039885, which violated seven rules totalizing 22 violations,
was used 1,261 times. In this particular code snippet, the
intention was to detect whether the browser is using an iOS
operating system. Due to the widespread presence of iOS
devices, this feature that might be needed in many web
applications, which could partially justify this high number
of occurrences. Moreover, code snippet stackoverflow.com/a/
7513356, which violated 15 rules, totalizing 64 violations,
was used 397 times. This code snippet is intended to control
the iframe of Youtube players, also a feature that might be
very common in the web development arena. Finally, the code
snippet stackoverflow.com/a/5598797, which violated 8 rules,
totalizing 19 violations, was used 325 times. This code snippet
was intended to determine the position of HTML elements
relative to the browser window. Similarly, we also believe that
this feature might be of interest of many web applications.
One final observation about these three reused code snippets:
semi was the most common rule violate in all of them.

V. IMPLICATIONS & LIMITATIONS

Implications. Based on our results, we believe that platforms
such as STACKOVERFLOW could integrate static analysis tools
to assess quality attributes of the source code posted on there.
This in turn could feed the gamification mechanism of these
websites, making not only readers more aware of any potential
concerns that may exist in the code snippets, but also fostering
a STACKOVERFLOW users to create questions/answers with
better quality. Moreover, by showing the rule violations is per-
vasive in JavaScript code snippets, CS professors should assert
to students that they cannot ignore it. Still, professors can take
advantage of our curated list of JavaScript code snippets and
discuss their violations in the classroom. Since ESLINT also
provides high-level suggestions on how to fix the violations,

professors could use them to discuss students’ suggestions
on how would they fix the violation while presenting the
suggestion provided by ESLINT.

Limitations. First, we only employed one linter, ESLINT.
Although ESLINT is one of the most popular ones [15], it
clearly did not catch all kinds of code violations (although
it is the one with the highest number of rules supported).
Moreover, in this study we employed 117 rules that cover a
wide spectrum of source code violations. Second, we restricted
our analysis to code snippets longer than 10 lines of code.
This decision was taken to avoid non-JavaScript code. In a
manually analysis of a random sample of 100 code snippets we
found that only five of them (31041975, 33367225, 24694986,
15714480, 31363059) did not have any JavaScript code. Fur-
thermore, we did not consider violations related to indentation
(we removed 3,461,739 violations related to indentation). This
decision was taken because we merged answers that have more
than one JavaScript code snippet into a single file. When doing
so, we may have introduced indentation issues. However, due
to the scale of our analysis (hundred of thousand of code
snippets), manual analysis to fix the indentation errors was
unfeasible. Finally, linters are mainly adopted for analysing
the full program. In contrast, most code snippets in Stack
Overflow are partial programs. This may justify why many
code snippets have variable violations.

VI. RELATED WORK

There is a recent flow of studies trying to shed some light
on quality concerns hidden in STACKOVERFLOW code snip-
pets [8], [9], [10]. Some other studies focused on understand
how developers perceive static analyzers, in general [16], and
linters, in particular [17], [15], [18]. More generally, there
are several works on STACKOVERFLOW, covering different
aspects of software maintenance and evolution [2], [3], [4],
[5], [6]. However, to the best of our knowledge, none of them
deal with the respect of understanding how common are rule
violations JavaScript code snippets or whether code snippets
flagged with potential errors are used in GitHub projects.

VII. CONCLUSIONS

In this work we mined rule violations in 336,643 JavaScript
code snippets. Our analysis was based on ESLINT, a popular
open source JavaScript linter. When employing this linter in
our corpus of code snippets, we perceived that no single
code snippet is free of violation (on average a code snippet
have 11.9 violations). In terms of the caracteristics of these
violations, we found that the majority of them are related to
stylistic issues, such as the absence of a semicolon at the end
of the statement or the lack of a consistent use of quotes. Rule
violations that might incur in errors are responsible for only
0.1% of the overall violations. Still, we perceived that only
36 code snippets with possible errors were used on GITHUB
projects. However, we found one single code snippet being
used 1,261 times.

stackoverflow.com/a/9039885
stackoverflow.com/a/9039885
stackoverflow.com/a/7513356
stackoverflow.com/a/7513356
stackoverflow.com/a/5598797

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments. This
work is partially funded by PROPESP/UFPA and CNPq
(#406308/2016-0).

REFERENCES

[1] Jay Hanlon. Five years ago, stack overflow launched. then, a
miracle occurred. https://stackoverflow.blog/2013/09/16/five-years-ago-
stack-overflow-launched-then-a-miracle-occurred/, visited 2019-02-06.

[2] Chris Parnin and Christoph Treude. Measuring api documentation on
the web. In Proceedings of the 2Nd International Workshop on Web 2.0
for Software Engineering, Web2SE ’11, pages 25–30, 2011.

[3] Fuxiang Chen and Sunghun Kim. Crowd debugging. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 320–332, 2015.

[4] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions
about software energy consumption. In 11th Working Conference on
Mining Software Repositories, MSR 2014, Proceedings, May 31 - June
1, 2014, Hyderabad, India, pages 22–31, 2014.

[5] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and
Björn Hartmann. Design lessons from the fastest q&a site in the
west. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 2857–2866, 2011.

[6] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and N. A.
Kraft. Building reputation in stackoverflow: An empirical investigation.
In 2013 10th Working Conference on Mining Software Repositories
(MSR), pages 89–92, May 2013.

[7] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. How
do developers utilize source code from stack overflow? Empirical
Software Engineering, Jul 2018.

[8] Jing Zhou and Robert J. Walker. Api deprecation: A retrospective
analysis and detection method for code examples on the web. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium

[17] Kristı́n Fjóla Tómasdóttir, Mauricio Finavaro Aniche, and Arie van
Deursen. Why and how javascript developers use linters. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, pages 578–589, 2017.

on Foundations of Software Engineering, FSE 2016, pages 266–277,
2016.

[9] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan,
and Miryung Kim. Are code examples on an online q&a forum reliable?:
a study of API misuse on stack overflow. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 886–896, 2018.

[10] F. Fischer, K. Bttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl. Stack overflow considered harmful? the impact of copy
amp;paste on android application security. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 121–136, May 2017.

[11] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to
usable code: An analysis of stack overflow code snippets. In Proceedings
of the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 391–402, 2016.

[12] Sebastian Baltes, Christoph Treude, and Stephan Diehl. SOTorrent:
Studying the origin, evolution, and usage of stack overflow code
snippets. In Proceedings of the 16th International Conference on Mining
Software Repositories, MSR 2019, Montreal, Canada, 2019.

[13] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI ’02, pages 234–245, 2002.

[14] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, December 2004.

[15] K. F. Tmasdttir, M. Aniche, and A. Van Deursen. The adoption of
javascript linters in practice: A case study on eslint. IEEE Transactions
on Software Engineering, pages 1–1, 2018.

[16] Maria Christakis and Christian Bird. What developers want and
need from program analysis: an empirical study. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 332–
343, 2016.

[18] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman.
Analyzing the state of static analysis: A large-scale evaluation in open
source software. In IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, pages 470–481, 2016.

