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ABSTRACT

Flaky tests are tests whose outcomes are non-deterministic. Despite
the recent research activity on this topic, no effort has been made on
understanding the vocabulary of flaky tests. This work proposes to
automatically classify tests as flaky or not based on their vocabulary.
Static classification of flaky tests is important, for example, to detect
the introduction of flaky tests and to search for flaky tests after
they are introduced in regression test suites.

We evaluated performance of various machine learning algo-
rithms to solve this problem. We constructed a data set of flaky and
non-flaky tests by running every test case, in a set of 64k tests, 100
times (6.4 million test executions). We then used machine learn-
ing techniques on the resulting data set to predict which tests are
flaky from their source code. Based on features, such as counting
stemmed tokens extracted from source code identifiers, we achieved
an F-measure of 0.95 for the identification of flaky tests. The best
prediction performance was obtained when using Random For-
est and Support Vector Machines. In terms of the code identifiers
that are most strongly associated with test flakiness, we noted that
job, action, and services are commonly associated with flaky tests.
Overall, our results provides initial yet strong evidence that static
detection of flaky tests is effective.
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1 INTRODUCTION

Regression testing is an important practice in software develop-
ment [7]. It aims to check that any code or configuration changes
do not break existing functionality. Ideally, tests should be deter-
ministic, i.e., their output should remain the same for the same
environment and product configuration, and this is often assumed
in academic research [11, 32]. Unfortunately, in practice, non-
deterministic—or flaky—tests are common [11, 19, 20]. These are
tests that may unpredictably pass or fail when rerun, even with no
changes to the configuration under test.

In regression testing of large complex systems, developers may
spend important resources in analyzing failures that are due to flaky
tests and not to actual problems in production code, with concrete
impact on productivity and costs. Practitioners got now used to
rerun each newly observed failure several times, to ascertain that it
is a genuine regression failure and not an intermittent one [16, 21].
However, this is a very inefficient way to deal with flakiness, and in
recent years the software engineering community is observing an
insurgence of research in approaches for preventing, identifying,
and repairing flaky tests, e.g. [4, 13, 15, 17, 19, 24].

Notwithstanding, flaky tests remain deceitful. By manually an-
alyzing the Apache Software Foundation (ASF) central commits
repository, Luo et al. [19] aimed at identifying the prevalent causes
of flakiness: they successfully identified a catalog of common causes
explaining why a test is flaky. For instance, one of their findings was
that “asynchronous wait" is the most common source of flakiness,
responsible for 45% of the cases analyzed, and occurs when a test
does not wait properly for the result of an asynchronous call.

Such types of study certainly help to understand the phenome-
non, and also to reason on strategies to counteract it. For instance,
the “asynchronous wait" problem can be fixed by introducing a
method call with time delays (e.g., Thread. sleep). However, to
really contrast flakiness, we need approaches that can timely and
efficiently recognize a flaky test, even well before it is committed in
the test repository. Preceding this study, we have analyzed different
datasets of flaky tests [4, 8, 19] and could observe that, as is the case
for the “asynchronous wait" example, flaky tests seem to follow a
set of syntactical patterns. Based on that, we conjecture that those
test code patterns could be used to automatically recognize flaky
tests using natural language processing (NLP) techniques.

To test this conjecture, we extracted identifiers, such as method
names, from the code of test cases preventively labeled as flaky
or non-flaky, and employed standard NLP techniques, including
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identifier splitting, stemming, and stop word removal, to turn these
identifiers into tokens that could be used as input for text classi-
fication algorithms. We augmented these tokens with numerical
features, such as the number of lines of code in the test case and
the number of Java keywords, acting as proxies of code complexity,
and ran five state-of-the-art classifiers on the resulting data set.
The evaluation confirmed our conjecture, with our best classifier
achieving an F;-score of 0.95.

After analyzing the impact of different features (e.g., identifier
splitting) in our pipeline on the overall performance, we computed
the information gain of each token, i.e., the usefulness of a token in
distinguishing flaky tests from non-flaky tests. Tokens such as “job”
and “table” showed particularly useful for this distinction, so that
we can identify a sort of vocabulary of flaky tests, of which in the
paper we provide a more detailed discussion.

Note that both the natural language processing and the predic-
tion phase that form our approach can be carried out in a completely
static way, i.e., without requiring any dynamic data such as cover-
age traces as is done in [4]. This is an important property of our
approach, as collecting coverage information can be very costly,
especially in Continuous Integration environments [12], whereas
the overhead caused by our approach is expected to be negligible.
Runtime cost consists of (1) extracting tokens from a test case (i.e.,
parsing), (2) post-processing the tokens (e.g., splitting words using
their camel-case syntax), and (3) predicting the class of the exemplar
using the previously-computed model.

In summary, the contributions of this work include:

(1) the first compilation of a vocabulary of flaky tests;

(2) a set of automated classifiers for test cases as flaky or non-
flaky;

(3) performance evaluation of state-of-the-art classifiers over
an existing data set of flaky tests.

Our contribution of a flaky test vocabulary and flakiness pattern
classifiers can help: (1) to prevent the introduction of flaky tests by
warning developers early, even while they are typing the test code
(e.g., our approach could be embedded into the test code editor)
and (2) to guide the identification of flaky tests that have been
introduced in the test repository.

2 RELATED WORK

Our work is related with empirical studies of: i) test code bugs, ii)
test smells and iii) flaky tests.

Test code bugs. A series of studies [28, 30] aims at characterizing
causes and symptoms of buggy tests: these are problematic test
cases that can fail raising a false alarm when in fact there is no
indication of a bug in the application code. This paper focuses on
test flakiness, which is one of several possible types of test code
issues. Vahabzadeh et al. [28] mined the JIRA bug repository and
the version control systems of ASF finding a set of 5,556 unique
bug fixes exclusively affecting test code. They manually examined
a sample of 499 test bugs and found that, among five identified
major causes of false alarms, 21% were due to flaky tests, which
they further classified into Asynchronous Wait, Race Condition
and Concurrency Bugs. In contrast, to classify flaky tests we aim
here at studying exclusively the test code, and not the fix changes,
as they do. The authors of [30] developed a set of patterns that can
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help pinpoint problematic test code portions in JUnit test cases,
and performed a validation study over a set of 12 open source
projects. While their intent is similar to ours, we aim here at an
automated lexical analysis of test cases. Recently, Tran et al. [25]
studied test quality by surveying 19 practitioner’s perceptions of
test quality and conducting a mining study over the change history
of 152 software projects, concluding that testers responsible for test
execution are more concerned with comprehension of test cases
rather than with their repeatability or performance.

Test smells. This research has been pioneered by van Deursen
et al. [29] who identified a series of 11 different test smells, i.e.,
symptoms of poor design choices in test coding, and suggested
a few refactoring guidelines. Recently, several extensive studies
related to test smells have been conducted. Bavota et al. [2] and
Tufano et al. [27] separately studied the test smell types defined
in [29], which were detected through the application of simple com-
prehensive rules and then manual validation. Precisely, the study
of Bavota et al. investigated their prevalence, concluding that up to
82% of 637 analyzed test classes contained at least one test smell,
whereas Tufano et al. studied the life cycle of those smells, con-
cluding that they are introduced since test creation (and not during
test evolution), last for long surviving even thousands commits,
and can be related to smells in production code. As flakiness may
originate from test smells, such studies motivate our own study of
code features in flaky tests. We remain to investigate if a catalogued
test smell suggests high-level features that a prediction model could
use to further increase accuracy. A recent work towards such di-
rection leverages information retrieval techniques [23], somewhat
following a conjecture as the one we make here. It is also worth
noting that a more comprehensive catalogue of test smells and a
summary of guidelines and tools to deal with them are provided by
Garousi et al. in a multivocal literature review [10].

Flaky tests. The first empirical study centered on flakiness is due
to Luo et al. [19]. In this seminal work, they first filtered out from
the complete commit history of the ASF central repository 1,129
commits including the keyword “flak” or “intermit”, and then man-
ually inspected all of them. As a result of their extensive work, they
propose 10 categories of flakiness root causes, still widely referred,
and summarize the most common strategies to repair them. Thorve
etal. [24] conducted a similar study in Android apps, observing that
some causes of Android tests flakiness are similar to those identi-
fied by Luo et al. [19], but also finding two new causes as Program
Logic and UL We are interested in identifying causes of flakiness
as [19, 24], but we strive for automated and efficient detection of
flakiness that could be applied, for example, to warn developers
during evolution when they are about to add likely flaky tests. We
remain to evaluate how our classifiers perform during evolution.
We are particularly interested in understanding developers’ reac-
tion to the indication of potential flakiness produced by an IDE in
contrast with the alternative approach that indicates flakiness in a
report produced by Continuous Integration (CI) systems.

Our paper is also related with works that propose techniques
to locate flaky tests. Bell et al. [4] and Lam et al. [17] proposed
different techniques for detecting test flakiness dynamically, i.e.,
they require that test cases are executed (one or more times), aiming
at optimizing the traditional approach used by practitioners of
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@Test

public void testCodingEmptySrcBuffer() throws Exception {

final WritableByteChannelMock channel = new ritableByteChannelMock(64);
final SessionOutputBuffer outbuf = new SessionOutputBufferImpl(1024, 128);
final BasicHttpTransportMetrics metrics = new BasicHttpTransportMetrics();
final IdentityEncoder encoder = new IdentityEncoder(channel, outbuf, metrics);
encoder.write(CodecTestUtils.wrap("stuff"));

final ByteBuffer empty = ByteBuffer.allocate(100);

empty.flip();

encoder.write(empty);

encoder.write(null);

encoder.complete();

outbuf. flush(channel);

final String s = channel.dump(StandardCharsets.US_ASCII);
Assert.assertTrue(encoder.isCompleted());

Assert.assertEquals("stuff", s);

}

U

pty src buffer codec test utils standard charsets
channel assert equals encoder byte buffer empty test
coding empty assert allocate flush outbuf metrics
dump complete wrap write flip stuff completed

Figure 1: A selected test case and its tokenized result.

rerunning failed tests for a fixed number of times. Gambi et al. [9]
focus on one specific cause of flakiness that is test dependency,
which they propose to discover by flow analysis and iterative testing
of possible dependencies. The works in [13, 15] aim instead to build
a static predictor, as we also do here. The work in [13] develops
a machine learning approach that mines association rules among
individual test steps in tens of millions of false test alarms. In [15]
a Bayesian network is instead constructed. In contrast, our work
aims at developing a lightweight flakiness predictor that learns from
test code of flaky and non-flaky tests. We are aware of one only
recent approach that takes a similar standpoint as we do (i.e., [5]).
However, here, we derive a more comprehensive set of predictors
and build a vocabulary of tokens, which is out of their scope.

3 APPROACH

To understand the vocabulary of flaky tests, we extracted all identi-
fiers from the test cases in our data set. We first localized the file
declaring the test class and then processed that file to identify the
flaky test case and corresponding identifiers. After obtaining the
identifiers used in the test code, we split these identifiers using their
camel-case syntax, and converted all resulting tokens to lower case.
We removed stop words from the set of tokens for each test case.
As a concrete example, consider the code snippet appearing at the
top of Figure 1. This is a test case from the httpcore project!. The
tokens extracted from the test appear at the bottom of the figure.
We observed that, in some cases, a part of an identifier after split-
ting (i.e., a token) seemed to be an indicator of flakiness (e.g., “ser-
vices”), whereas, in other cases, the entire identifier was an indicator
of flakiness (e.g., “getstatus”), but not its constituents on their own
(e.g., “get”, “status”). Therefore, we used both the split identifiers
and the original identifiers (after lower-casing) as input for the text
classification. In other words, the identifier “getStatus” would be
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represented using three features: “get”, “status”, and “getstatus”. We
evaluate the impact of this choice in our evaluation section.

In addition to the tokens obtained this way, we determined the
length of each test case in terms of lines of code and the number
of Java keywords contained in the test code, as a proxy for the
code’s complexity. Again, we separately evaluate the impact of
these choices as part of answering our third research question.

We then used the pre-processed flaky and non-flaky test cases
as input for machine learning algorithms. Each test case was repre-
sented using its features: the number of lines of code, the number
of Java keywords, and for each token the information whether or
not it contained this token. This approach creates one feature for
each distinct token found in tests cases. Consequently, our data set
includes a large number of features. Following previous work, we
used attribute selection to remove features with low information
gain: we used the same threshold of 0.02 as in previous work [26].

We evaluated the performance of five machine learning clas-
sifiers on our data set. We chose the same classifiers as used in
previous work on text classification in the context of software engi-
neering (e.g., [6, 26]): Random Forest, Decision Tree, Naive Bayes,
Support Vector Machine, and Nearest Neighbour. For all algorithms,
we relied on their implementation in the open source machine
learning software Weka [31].

To evaluate the performance, we split our data set into 80%
for training and 20% for testing. We choose to report the results
based on this split rather than x-fold cross-validation since cross-
validation would train a new model from scratch for each fold, thus
resulting in several models rather than a single one. Note that we
also ran our experiments with 10-fold cross-validation, with very
similar (slightly improved) performance numbers. We report the
standard metrics of precision (the number of correctly classified
flaky tests divided by the total number of tests that are classified as
flaky), recall (the number of correctly classified flaky tests divided
by the total number of actual flaky tests in the test set), and F;-score
(the harmonic mean of precision and recall). We also report MCC
(Matthews correlation coefficient) and AUC (area under the ROC
curve). MCC measures the correlation between predicted classes
(i-e., flaky vs. non-flaky) and ground truth, and AUC measures the
area under the curve which visualises the trade-off between true
positive rate and false positive rate. We focus our discussions on
the Fi-score since we are more interested in correctly predicting
flakiness rather than non-flakiness.

4 OBJECTS OF ANALYSIS

This section describes the datasets we used to train and test our
prediction model. Machine learning algorithms use positive and
negative examples for learning. In our setting, positive examples cor-
respond to flaky test cases whereas negative examples correspond
to likely non-flaky test cases. Indeed, the diagnosis of non-flakiness
is an estimate—there is no guarantee a test is non-flaky with a given
number of runs.

We based the construction of our data set on the DeFlaker bench-
mark?. We took this decision based on the number of flaky test
cases it reports, with over 5K flaky tests?, which is, to the best of

2www.deflaker.org/icsecomp/

3http://www.deflaker.org/wp-content/uploads/2019/11/historical_rerun_flaky_tests.csv


https://tini.to/52IC

MSR °20, October 5-6, 2020, Seoul, Republic of Korea Pinto et al.
Table 1: Projects and number of test cases analyzed.

project description GitHub ID flaky * tﬁ(s)t;_ flaky
achilles Java Object Mapper/Query DSL generator for Cassandra doanduyhai/Achilles.git 67 8
alluxio distributed storage system Alluxio/alluxio.git 4 3022
ambari manages and monitors Apache Hadoop clusters apache/ambari.git 4 15
assertj-core strongly-typed assertions for unit testing joel-costigliola/assertj-core.git - 13455
checkstyle checks Java source code for adherence to standards checkstyle/checkstyle.git - 3169
commons-exec executes external processes from within the JVM apache/commons-exec.git 2 103
dropwizard  library for building production-ready RESTful web services dropwizard/dropwizard.git 1 1641
hadoop framework for distributed processing of large data sets apache/hadoop.git 305 4475
handlebars a tool for building semantic templates jknack/handlebars.java.git 1 844
hbase non-relational distributed database apache/hbase.git - 402
hector interface to the Cassandra database hector-client/hector.git 2 282
httpcore low level HTTP transport components apache/httpcore.git 2 1441
jackrabbit-oak hierarchical content repository apache/jackrabbit-oak.git 8 13172
jimfs in-memory file system for Java 7+ google/jimfs.git 7 5833
logback a logging framework for Java qos-ch/logback.git 2 526
ninja full stack web framework for Java ninjaframework/ninja.git 18 1022
okhttp manage HTTP sessions square/okhttp.git 66 1663
oozie workflow engine to manage Hadoop jobs apache/oozie.git 856 729
orbit framework for building distributed systems orbit/orbit.git 8 -
oryx framework for large scale machine learning OryxProject/oryx.git 13 393
spring-boot Java-based framework used to create micro services spring-projects/spring-boot.git 15 8133
togglz feature flags for the Java platform togglz/togglz.git 11 441
undertow non-blocking web server undertow-io/undertow.git - 607
wro4j web resource optimizer wro4j/wro4j.git 10 1146
zxing barcode scanning library for Java zxing/zxing.git 1 457
total - - 1,403 62,979

our knowledge, the largest data set of flaky tests available today. In
a nutshell, DeFlaker monitors the coverage of several Java projects.
For each one of them, DeFlaker observes the latest code changes
and marks as flaky any newly failing test that did not execute
changed code. The expectation is that a test that used to pass and
did not execute changed code should pass. As that was not the case,
there must have been changes in the coverage profile caused by
non-determinism.

In the following, we describe the methodology we used to con-
struct the datasets. DeFlaker is focused on finding flaky test cases.
Consequently, its benchmark does not list non-flaky tests, which
are necessary for training a machine learning classifier. To circum-
vent this limitation, we re-executed the test suites of the projects
from the DeFlaker benchmark for 100 times and flagged as (likely)
non-flaky all test cases that had a consistent outcome across all
executions, e.g., the test passes in all runs.

It is worth noting that, considering all test cases from all projects
we analyzed, the number of non-flaky tests is much higher com-
pared to the number of flaky tests and learning from imbalanced
data is challenging. To mitigate this problem, we selected an equal
number of non-flaky tests as that of flaky tests—original DeFlaker
data set—and selected each non-flaky test in a way that the median
sizes (in number of lines of code) of flaky and non-flaky tests were
nearly the same. More precisely, we proceeded as follows. Consider

that the number of flaky test cases and their median sizes were,
respectively, n and s. We randomly selected a test with size above s
and then randomly selected a test with size below s. We repeated
this selection process until selecting n distinct tests to complete the
data set. We empirically confirmed that the median sizes of the set
of flaky and non-flaky test sets were very close.

Altogether, we considered 24 of the 25 DeFlaker projects, dis-
carding one project—orbit. In the latter, we were unable to build
the project, since the most recent version had build compilation
errors. We also tried to navigate in the latest five revisions available
in the version history, but we observed the same build problem. We
then decided to discard this project from the rest of the analysis. All
re-executions for non-flaky tests were made on the most recent re-
vision of each of the 24 studied projects. Altogether, we ran 64k test
cases over all the studied projects. The data produced in this work is
available online at: https://github.com/damorimRG/msr4flakiness/

5 EVALUATION

Based on the approach described and the data set curated, we pose
the following research questions.

e RQ1. How prevalent and elusive are flaky tests?
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Rationale. Prior work showed that flaky tests are common in
regression test suites [4, 8, 11, 18, 19, 21]. The goal of this research
question is to confirm that phenomenon to justify the importance
of statically classifying flaky tests, which is the central goal of this
paper. To answer this question, we conducted an experiment where
we ran the test suites of the 24 projects we selected (see Section 4)
for 100 times on their latest revisions. We considered a test as flaky
if there was a disagreement in the outcomes (i.e., pass, fail or error)
across the hundred runs. For example, we consider as flaky a test
that passes in all but one (or more) run(s). Given that most projects
in that data set are popular and that the teams had the chance to fix
flaky tests originally reported in the DeFlaker paper, we considered
those projects a good benchmark to check whether flaky tests are
still present. Another dimension we wanted to analyze with this
study is the degree of flakiness of each test. This is important to
identify if there is an ideal number of reruns that one could use to
find flakiness. If that number is sufficiently small then rerunning test
suites may be considered a practical approach to detect flakiness.

e RQ2. How accurately can we predict test flakiness based on
source code identifiers in the test cases?

Rationale. Being able to predict test flakiness based on source
code identifiers would enable us to notify developers of flaky tests
without having to run these tests. This would be particularly impor-
tant since we conjecture that flaky tests might take a while to run
because they might rely on time-intensive actions such as connect-
ing to external services, for example, and since it is impossible to
determine flakiness based on a single run or even several runs (see
Section 5.1). Of course, such a recommender system, which warns
developers when they are about to introduce a flaky test, can only
be useful if the precision of the approach is high—developers would
not appreciate false positives, i.e., being warned about flaky tests
which are not actually flaky. Therefore, in answering our second
research question, we seek to evaluate the performance of classi-
fiers to predict test flakiness without running the tests, i.e., based
on the source code identifiers.

e RQ3. What value do different features add to the classifier?

Rationale. Understanding what features affect the performance
of the classifier will help inform future work in areas where fur-
ther performance gains might be possible. We employ standard
pre-processing steps, such as stemming and stop word removal, in
our approach, but also want to evaluate to what extent these steps
affect the performance of the classifiers. In particular, when con-
verting source code identifiers into numeric features amenable to
traditional machine learning algorithms, we need to make several
design choices, such as deciding whether to split identifiers. We
also want to evaluate the impact of these choices to guarantee the
best possible performance of the classifier.

e RQ4. Which test code identifiers are most strongly associated
with test flakiness?

Rationale. Cataloguing the test code identifiers that are strongly
associated with test flakiness can inform software developers of
particular aspects of developing software that are likely to lead to
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Table 2: Number of flaky tests per project. #PF (resp., #PE)
denotes number of Pass and Fail (resp., Pass and Error) tests.

project SHA # test cases # flaky tests (%) #PF #PE
alluxio 260533d 3,034 12 (0.40) 1 11
hector a302e68 322 40 (124) 3 37
jackrabbit-oak 226e216 13,193 2(002) 1 1
okhttp 6661e14 1,682 19 (1.20) 19 0
undertow  bé6bd4d2 609 20033 1 1
wrod4j d2a3de7 1,158 11(0.95) 0 11

- — 19,998 86 (=) 25 61

flaky tests. Based on this information, developers might be helped to
prevent test flakiness, or at least be aware and pay extra care to areas
that are likely to be associated with flaky tests. Such information
could, for example, be useful when conducting code review and
when debugging test failures.

5.1 Answering RQ1: How prevalent and elusive
are flaky tests?

Table 2 shows the results for this first research question. The table
shows the project’s name (column “project"), their revision (col-
umn “SHA"), the total number of tests (column “# test cases”), the
number of flaky tests found in that revision of that project (col-
umn “# flaky tests (%)"), and the breakdown of kind of flakiness: PF
indicates a mix of pass and fail runs and PE indicates a mix of pass
and error runs. We did not find other combination of test outcomes
in these configurations. The table only includes projects with at
least one flaky test detected. This result indicates that flakiness is
indeed a problem affecting 25% (=6/24) of the projects analyzed.
Overall, we found a total of 86 flaky tests by rerunning test cases.
The project alluxio is a virtual distributed storage system, hector is
a high-level Java client interface to the Cassandra distributed data-
base, jackrabbit-oak is an efficient implementation of a hierarchical
content repository for use in web sites and content-management
systems, okhttp is a library to efficiently manage HT TP sessions,
undertow is a high-performance non-blocking web server imple-
mentation, and wro4j is a library to optimise web page loading time.
Note that every project involves IO, for example, they refer to the
file system or the network.

Another interesting finding of this table is the low number of
flaky tests. Some reasons that may justify this result: First, running
100 times might not be enough to find a good number of flaky tests.
However, it is not in the scope of this paper to empirically evaluate
the ideal number of reruns to find flaky tests. Second, we used the
most recent version of the DeFlaker data set. Maintainers of these
projects could have fixed the known flaky tests. Third, our focus
on unit tests might cap the total number of flaky tests that could
be observed.

Figure 2 shows the histogram for the probability of a flaky test
to pass, with data aggregated across all projects. The x-axis shows
probability intervals (e.g., [0, 10%[, [10%, 20%][, etc.) whereas the
y-axis shows the number of flaky tests that fall in that interval.

The histogram shows that the majority of the cases we found
to be flaky, around 70% (61 out of 86), passed in more than 90% of
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Figure 2: Histogram of probability of a flaky test to pass.

the executions. For example, for 47 flaky tests (55%), the test passed
99 times (out of 100 repetitions) and produced a different result in
only one case. This result may indicate that more executions might
be needed to accurately identify flaky tests.

The histogram also shows that there are rare cases where the
probability of a flaky test to pass is low—-only one flaky test passed in
less than 10% of the executions. For this case, the strategy adopted
by Continuous Integration (CI) systems to rerun the test for a
small number of times would unlikely identify the cause of failure
as flakiness. The probability of subsequent failures after the first
test execution fails is relatively high. Assuming for example that
the framework reruns a test three other times, after a failure, the
probability of flakiness going undetected would be 66% (=0.9%), i.e.,
the probability of four failures in a row.

Results indicate that flakiness is a relatively common
problem in IO-related projects. Furthermore, detecting
flakiness with test reruns is challenging.

5.2 Answering RQ2: How accurately can we
predict test flakiness based on source code
identifiers in the test cases?

Table 3 shows the performance of five machine learning algorithms

on our data set in terms of standard metrics used in the literature,

namely: precision, recall, Fi-score, MCC (Matthews correlation
coeflicient), and AUC (area under the ROC curve). Numbers in bold
highlight the algorithm that performed best for a given metric.

Table 3: Classifier performance

algorithm |precision recall F; MCC AUC
Random Forest 0.99 091 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 093 0.80 0.86 0.74 0.93
Support Vector 093 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

All classifiers achieved very good performance in distinguishing
flaky test cases from non-flaky test cases. While Random Forest
achieved the best precision (0.99), the Support Vector Machine
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classifier slightly outperformed Random Forest in terms of recall
(0.92). Overall, in terms of F;-score, Random Forest achieved the
best performance, but all classifiers achieved an F;-score of at least
0.85. Results are consistent when considering Matthews correlation
coeflicient and area under the ROC curve. In both cases, the Random
Forest classifier achieves the best performance, with values of 0.90
and 0.98, respectively.

As is common when using automated classifiers, we attempted
parameter tuning to see if it would impact the classifier performance.
In this case, we changed the ‘number of trees’ parameter of the
Random Forest algorithm from its default setting in Weka of 100.
Increasing the number of trees had no impact on the F;-score (we
tried values of 500 and 1,000) while reducing the number of trees led
to a decrease in Fi-score to 0.91 for the values of 5 and 10. Reducing
the number of trees to 50 had no impact on the Fj-score.

All classifiers performed very well on our data set.
Overall, Random Forest was the classifier that
performed best.

5.3 Answering RQ3: What value do different
features add to the classifier?

In this section, we investigate the impact of the different features
used in our classifiers on their performance. We focus the inves-
tigation on the two best-performing classifiers identified in the
previous section: Random Forest (best precision and F;-score) and
Support Vector Machine (best recall).

Tables 4a and 4b compare the performance of these two classi-
fiers to the performance of the same classifier without a particular
feature, including features of the text classification algorithm (e.g.,
stemming, stop word removal, etc.) and features describing the data
(e.g., number of lines of code, contains identifier "status", etc.).

For the Random Forest classifier (Table 4a), not all features in
our pipeline had a visible impact on the results: running the same
pipeline, but without stemming, without stop word removal or
without including the LOC metric had no impact on the F;-score, for
example, and it also made no difference whether we considered only
split identifiers as tokens (e.g., turning getId into two features get
and id instead of three features get, id, and getid). Lowercasing
had a negligible impact (without it, the F;-score would drop from
0.95 to 0.94), similar to not including Java keywords or not splitting
identifiers by camel case.

The only large impact was observed when we only included
Java keywords as tokens, but not identifier names. In this case, the
performance would drop from an F;-score of 0.95 to 0.79.

As Table 4b shows, the results for the Support Vector Machine
classifier are similar: the Fj-score was not affected by stemming,
stop word removal, the LOC metric, and Java keywords, while the
effect of lowercasing was negligible. Not splitting identifiers re-
duced the F;-score from 0.93 to 0.89 and not considering identifiers
at all reduced it to 0.74.
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Table 4: Performance without features

(a) Random Forest

features |precision recall F; MCC AUC
All Features ‘ 0.99 091 095 0.90 0.98
No Stemming 0.99 091 095 0.90 0.98
No Stop W. Removal 0.99 091 095 0.90 0.98
No Lowercasing 0.98 091 094 0.89 0.98
No Identifier Split. 0.98 0.89 0.94 0.88 0.98
Only Split Identif. 0.99 092 095 0.90 0.98
No Lines of Code 0.99 0.91 095 0.90 0.99
No Java Keywords 0.99 0.90 0.94 0.89 0.98
No Identifiers 0.76 0.82 0.79 0.56 0.85
(b) Support Vector
features ‘precision recall F; MCC AUC
All Features ‘ 0.93 092 093 0.85 0.93
No Stemming 0.93 092 093 0.85 0.93
No Stop W. Removal 0.93 092 093 0.85 0.93
No Lowercasing 091 093 0.92 0.84 0.92
No Identifier Split. 0.91 0.88 0.89 0.79 0.90
Only Split Identif. 0.93 0.92 093 0.85 0.93
No Lines of Code 0.93 0.92 0.93 0.85 0.93
No Java Keywords 0.93 0.92 0.93 0.85 0.93
No Identifiers 0.64 0.87 0.74 0.40 0.68

While the impact of some pre-processing steps is
negligible, identifier splitting has a positive impact
on the classifier performance.

5.4 Answering RQ4: Which test code identifiers
are most strongly associated with test
flakiness?

Table 5 shows the 20 features with the highest information gain
along with their frequency in flaky and non-flaky test cases. The
table also shows in how many different projects each of these
features appeared. We discuss the most prominent features in more
detail in the following paragraphs.

The feature with the highest information gain is that associated
with the token “job”, i.e., the feature "is the token job included in the
test case?". This feature appeared in 524 different flaky tests in our
data set, distributed across 2 projects (Hadoop and Oozie), but only
in 4 different non-flaky tests, all from the same project (Hadoop). An
example of a flaky test which contains the token “job” more than
ten times is testFailAbortDoesntHang in the Hadoop project.
Figure 3 shows the code for this test. The test creates and aborts jobs
within a ten second time budget—the timeout is likely the reason
that the test case sometimes fails and sometimes does not. Several of
the other test cases associated with flakiness and the token job are
about killing a job, e.g., testKill and testCoordKillSuccess1.

The feature with the second highest information gain is that as-
sociated with the token “table”, appearing in 406 flaky tests across
four projects (Achilles, Hadoop, Oozie, and OkHttp) and in eight
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Table 5: Top 20 features by Information Gain

feature inf. gain flaky non-flaky

’ #tests #projects | #tests #projects
job 0.2053 | 524 () 4 (1)
table 0.1449 | 406 (4) 8 ()
id 0.1419 | 522 (9) 52 (4)
action 0.1366 | 387 3) 8 ()
oozie 0.1360 | 274 (1) 0 (0)
services 0.1310 371 2) 7 (1)
coord 0.1192 307 (1) 0 (0)
getid 0.1077 | 287 (4) 1 1)
coordinator 0.1070 258 (1) 0 (0)
xml 0.1062 | 147 () 6 (2)
LOC (metric) 0.0978 - - - -
workflow 0.0914 207 (1) 0 (0)
getstatus 0.0885 246 (2) 2 (2)
throws (Java)  0.0874 3 3) 7 ()
record 0.0845 296 (2) 18 (1)
ipa 0.0781| 207 () 0 (0)
jpaservice 0.0753 200 (1) 0 (0)
service 0.0733 367 (4) 67 (3)
wi 0.0721| 192 (1) 0 (0)
coordinatorjob  0.0689 184 (1) 0 (0)

@Test(timeout = 10000)
public void testFailAbortDoesntHang() throws IOException {
Configuration conf = new Configuration();
conf.set(MRJobConfig.MR_AM_STAGING_DIR, stagingDir);
conf.set(MRJobConfig.MR_AM_COMMITTER_CANCEL_TIMEOUT_MS, "1000");
DrainDispatcher dispatcher = new DrainDispatcher();
dispatcher.init(conf);
dispatcher.start();
OutputCommitter committer = Mockito.mock(OutputCommitter.class);
CommitterEventHandler commitHandler =
createCommitterEventHandler (dispatcher, committer);
commitHandler.init(conf);
commitHandler.start();
// Job has only 1 mapper task. No reducers
conf.setInt(MRJobConfig.NUM_REDUCES, 90);
conf.setInt(MRJobConfig.MAP_MAX_ATTEMPTS, 1);
JobImpl job = createRunningStubbedJob(conf, dispatcher, 1, null);
// Fail. finish all the tasks. This should land the JobImpl directly in the
FAIL_ABORT state
for (Task t : job.tasks.values()) {
TaskImpl task = (TaskImpl) t;
task.handle(new TaskEvent(task.getID(), TaskEventType.T_SCHEDULE));
for (TaskAttempt ta : task.getAttempts().values()) {
task.handle(new TaskTAttemptEvent(ta.getID(), TaskEventType.
T_ATTEMPT_FAILED));
}

assertJobState(job, JobStateInternal.FAIL_ABORT);

dispatcher.await();

// Verify abortJob is called once and the job failed

Mockito.verify(committer, Mockito.timeout(2000).times(1)).abortJob((JobContext
) Mockito.any(), (State) Mockito.any());

assertJobState(job, JobStateInternal.FAILED);

dispatcher.stop();

3

Figure 3: Code for test TestJobImpl. testFailAbortDoesntHang
from project Hadoop with prolific use of term "job".

non-flaky tests across two projects (Hadoop and HttpCore). An
example is the test testTableCreateAndDeletePB from Hadoop
which contains the token more than ten times. Figure 4 shows the
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public void testTableCreateAndDeletePB() throws IOException, JAXBException {

String schemaPath = "/" + TABLE2 + "/schema";

TableSchemaModel model;

Response response;

assertFalse(admin.tableExists(TABLE2));

// create the table

model = TestTableSchemaModel.buildTestModel (TABLE2);

TestTableSchemaModel.checkModel (model, TABLE2);

response = client.put(schemaPath, Constants.MIMETYPE_PROTOBUF, model.
createProtobufOutput());

assertEquals(response.getCode(), 201);

// make sure HBase concurs, and wait for the table to come online

admin.enableTable(TABLE2);

// retrieve the schema and validate it

response = client.get(schemaPath, Constants.MIMETYPE_PROTOBUF);

assertEquals(response.getCode(), 200);

model = new TableSchemaModel();

model.getObjectFromMessage(response.getBody());

TestTableSchemaModel. checkModel (model, TABLE2);

// delete the table

client.delete(schemaPath);

// make sure HBase concurs

assertFalse(admin.tableExists(TABLE2));

}

Figure 4: Code for test method testTableCreateAndDeletePB
from class TestSchemaResource, project Hadoop, with high
usage of term "table".

code for this test case. The code suggests that the need to wait
for a table to come online after a call to method enableTable
might be the reason for flakiness. Other flaky test cases containing
the token “table” are similar, e.g., testDisableAndEnableTable
and testWritesWhileScanning. Connecting to tables and/or
databases appears to be a source for flakiness.

“Id” is a common token in many software development projects
and it is the third most useful token for distinguishing flaky test
cases from non-flaky test cases in our data set. It appears in 522
flaky test cases across nine projects (Cloudera Oryx, Orbit, OkHttp,
Achilles, Ambari, Hadoop, Jackrabbit Oak, Oozie, and Togglz),
and in 52 non-flaky test cases across four projects (ZXing, Ninja,
Hadoop, HttpCore). In addition, the token getid is the features with
the eighth-highest information gain, appearing in 287 flaky test
cases across four projects (Cloudera Oryx, Hadoop, Jackrabbit Oak,
Oozie) and only in a single non-flaky test case in Hadoop. As an
example, the test method testUpdatedNodes in Haddop contains
the token id more than ten times. In this method, id is used to refer
to different objects: jobs, attempts, applications, and nodes. Much
like the example described in the context of the token job, in this
case, the test method relies on jobs being completed elsewhere,
which might contribute to its flakiness.

The token “action” occurred in 387 different flaky test cases
across three projects (Ambari, Hadoop, and Oozie) and in eight
different non-flaky test cases across two projects (Hadoop and
Logback). An example is the test method testActionExecutor in
Oozie which contains the token action four times. Figure 5 shows
the code for this test method, which attempts to execute an action
through a remote method invocation (RMI), likely the source of
flakiness, e.g., because of timing issues in asynchronous calls or the
remote object not listening to synchronous calls.

Table 5 shows further tokens associated with flakiness. Interest-
ingly, we did not find a single token in the top 20 that was more

public void testActionExecutor() throws Exception {
ActionExecutor.enableInit();
ActionExecutor.resetInitInfo();

ActionExecutor ae = new MyActionExecutor();
ae.initActionType();

ActionExecutor.disableInit();

ae.start(null, null);

ae = new MyActionExecutor(1, 2);

ae.check(null, null);

Exception cause = new IOException();

try {

throw ae.convertException(cause);

} catch (ActionExecutorException ex) {
assertEquals(cause, ex.getCause());
assertEquals(ActionExecutorException.ErrorType. TRANSIENT, ex.getErrorType());
assertEquals("I0", ex.getErrorCode());

} catch (Exception ex) {

fail();

}

// omitted for space

}

Figure 5: Code for test TestActionExecutor. testActionExecutor

from Oozie, with high usage of term "action".

strongly associated with non-flakiness. With the exception of the
Java keyword throws, for all features shown in the table, a higher
value indicates a higher likelihood of flakiness. In contrast, for
the Java keyword throws, a lower value indicates a higher likeli-
hood for flakiness. We conjecture that proper exception handling
as indicated through the Java keyword throws can help avoid test
flakiness.

The vocabulary associated with flaky tests contains
words such as job, table, and action, many of which
are associated with executing tasks remotely
and/or using an event queue.

6 DISCUSSION
6.1 Threats to Validity

Threats to the construct validity are related to the appropriate-
ness of the evaluation metrics we used. We report precision, recall,
Fi-score, MCC (Matthews correlation coefficient), and AUC (area
under the ROC curve), which have been used in many software
engineering tasks that require classification (e.g., [14]). Our conclu-
sions are mostly based on precision and F;-score since these two
metrics capture the usefulness of a recommender system that could
warn developers when they are about to introduce a flaky test.
Threats to the internal validity compromise our confidence in
establishing a relationship between the independent and dependent
variables. While we have evidence for the flakiness of the test cases
that we consider as flaky, it is possible that some of the test cases
that we consider as non-flaky are actually flaky. When performing
our first experiment (running the test cases of 24 Java projects
100 times to find flaky tests), we noticed that 55% of the test cases
passed 99 times, and failed just once. This result suggests that
the strategy of rerunning tests several times to detect flakiness
could miss cases of flakiness as tests could have been insufficiently
executed. Consequently, considering our experiment, in particular,
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we could have detected more cases of flaky tests if we executed each
test more times. This threat can be mitigated only by performing
additional, more extensive, experiments. Another internal validity
threat may be related to the parameters chosen for applying the
algorithms investigated. This threat was mitigated by tuning the
parameters with values that are standard in this kind of work.

Threats to external validity relate to the ability to generalize
our results. We cannot claim generalization of our results beyond
the particular test cases studied. In particular, our findings are in-
trinsically limited by projects studied, as well as their domains.
Although the studied projects are mostly written in Java, we do not
expect major differences in the results if another object-oriented
programming language is used instead, since some keywords may
be shared among them. Nevertheless, future work will have to in-
vestigate to what extent our findings generalize to software written
in other programming languages and software of different applica-
tion domains. We are also eager to validate our results on a much
larger selection of flaky tests. Curiously, we noticed in the exper-
iment of RQ1 (Section 5.1) that all projects manifesting flakiness
are IO-intensive. We should revisit that hypothesis by looking for
IO and non-IO-intensive projects in the future. The validity of that
hypothesis would enable us to find other projects with flaky tests
as to augment our data set. Due to the limited size of the data set,
we did not attempt within-project classification. Future work will
investigate the extent to which this is possible as well as the differ-
ences between classifiers trained on different projects. Moreover,
one might wonder why can the words used in test cases predict
flaky tests so well. Table 5, which shows for several keywords how
often they appear in flaky and non-flaky tests, might help answer
this question. For some of these keywords, the differences are ex-
treme, e.g., "job" occurs in 524 flaky tests and in 4 non-flaky tests. A
classifier guessing that all tests containing the term "job" are flaky
would by definition already achieve a precision of 99.2% (524/528).
With similar ratios for other keywords and the power of Random
Forest and Support Vector Machine, respectively, these differences
translate into an excellent performance of the classifiers in terms
of precision.

6.2 Lessons Learned

We elaborate in the following the main lessons we learned from
this work.

On the observed results. We used the same set of machine learn-
ing algorithms for the classification of test cases that have been
used in many previous studies (e.g., [6]). The finding that our best
performance was achieved by Random Forest (all metrics but recall)
and Support Vector Machines (recall) is in line with previous text
classification studies in software engineering (e.g., [1, 26]). The
observed performance of the classifiers was very good (F;-measure
= 0.95), which is a better result than obtained in most other text
classification problems for software engineering. This suggests that
source code identifiers carry much of the information needed to
determine whether a test case is flaky.

On the efficiency of the approach. In this work the efficiency of
our approach was not measured experimentally. We will conduct
such a study as part of our future work and we expect it will confirm
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our expectation that the overhead of our approach is minimum.
Being a completely static approach, most of the steps are completed
in negligible time. Conceptually, the cost of predicting whether
a test is flaky or not consists of (1) extracting tokens from a test
case (i.e., parsing), (2) post-processing the tokens (e.g., splitting
words using their camel-case syntax), and (3) predicting the class
of the exemplar using the previously-computed model. The cost of
building the model is also relatively very low. For the 2,250 test cases
in our training set (80% of 1,403 flaky and 1,403 non-flaky tests),
preparing the test cases was instantaneous (remove stop words,
collect tokens, split identifiers, etc.) and training the Random Forest
classifier with 100 iterations took 11.81 seconds. When new test
cases are added to the project, or when existing ones are updated
or removed from the test suite, our current approach would require
re-training the model. For larger sets of training data, in future
work, we will explore the use of models that can easily be updated.

Feature Selection. Our results showed that some of the pre-
processing steps such as stemming and stop word removal only had
negligible impact on the classifier performance. However, the way
that source code identifiers were split affected the performance. In
our current approach, each distinct token (after pre-processing) is
considered as a separate feature and we employ feature selection
based on information gain to reduce the number of features in the
classifier. While machine learning algorithms implicitly take into ac-
count relationships between these tokens, future work could make
this more explicit. For example, we found anecdotal evidence for
tokens such as “job” and “action” to co-occur in test cases. Future
work could explicitly consider investigating the importance of such
combination for the prediction of flakiness. Interestingly, we found
split identifiers (e.g., “id”, “job”) as well as complete identifiers (e.g.,
“getid”, “coordinatorjob”) among the features with the highest in-
formation gain, suggesting that there is no clear rule as to whether
or not split identifiers are more useful for classification than com-
plete ones. We expect similar conclusions to apply to scenarios of
co-occurrence of source code identifiers.

On the rerunning strategy. Rerunning failing test cases for identi-
fying flaky tests can be very costly. During the process of building
our data set we noticed that many of the projects (e.g., jackrabbit-
oak and hadoop) take hours to run the whole test suite. For instance,
for hadoop, one execution of a test suite takes about 94 minutes
on an Intel Xeon machine (ES-2660) with 40 processors (2.20GHz)
with 251GB of main memory. Repeating the execution many times
would not be doable in many industrial environments. Even big
companies with enormous computational resources (e.g., Google)
cannot afford rerunning every failing test on every commit [22].
That said, the rerunning strategy remains an interesting alternative-
unless we can derive approaches that are effective in identifying
flaky tests while remaining efficient. Our approach is an attempt
of providing such an effective and efficient solution for the flaki-
ness problem. Note that static detection of flakiness could be used
to reduce cost of rerunning test cases on failures. For example, a
continuous integration system could be triggered to rerun a test
only when that test becomes suspicious as per the output of the
prediction models proposed in this paper.
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6.3 Implications

This work has implications to both research and practice.

Research. In this work we noticed that an arbitrary number of
re-executions might not be the best solution for finding flaky tests.
Researchers could take advantage of this finding and explore other
approaches, such as experimenting with a dynamic threshold to
more sophisticated techniques such as finding an optimal threshold
using search based optimization. Moreover, researchers could use
the vocabulary of flaky tests and conduct additional experiments
with them. For instance, researchers could investigate the propor-
tion of builds failing in continuous integration systems that happen
to have any of the features observed in our work. Researchers could
also propose other machine learning algorithms that could be more
suitable to work with flaky test data.

Practice. Practitioners could also take advantage of our findings.
When learning from the top 20 features, developers could keep one
eye open when writing their tests and try to avoid such terms (and
eventual related terms). Similarly, code reviewers could easily spot
such terms and suggest developers to propose another solution.
Testing framework maintainers could also take advantage of this
finding by proposing mocking frameworks that could introduce
(or even recommend) mock strategies tailored to deal with flaky
scenarios. Still, tool builders could warn developers when suspicious
flaky-terms are used in the software development process.

7 CONCLUSION

Flaky tests are test cases that sometimes pass and sometimes fail,
without any obvious change in the test code or in its execution
environment. Unfortunately, the non-deterministic behaviour of
flaky tests could severely decrease the value of an automated regres-
sion suite. For instance, when dealing with flaky tests, developers
may not trust the outcome of these tests and ultimately may start
ignoring if a test failure is due to a real bug or its non-deterministic
behaviour. In the last few years, research on test flakiness has gained
significant momentum. Prior work focused on characterizing what
is a flaky or identifying the root cause of flaky tests. However, lit-
tle effort has been placed on how to efficiently recognize a flaky
test. This paper focuses on the question of whether there are pro-
gramming identifiers (e.g., method and variable names) that could
be used to automatically recognize flaky tests. More precisely, the
paper proposes to answer the question: Is there a programming
vocabulary that could distinguish flaky tests from their non-flaky
relatives?

To answer this question, we started by extracting test cases from
a well-known data set of flaky tests [3]. Since we needed to have
flaky and non-flaky tests and the data set only provided flaky data,
we decided to rerun the Java projects studied in this data set, but
now keeping an eye open for finding flaky tests. We then ran 100
times the 64k test cases of the 24 studied Java projects. We flag a
test as flaky if there was disagreement in the test outcomes. After
the identification of flaky tests, we extract all identifiers from the
test cases using traditional tokenization procedures. Finally, the
pre-processed flaky and non-flaky test cases were used as input to
five machine learning algorithms.
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Based on this data and approach, we could observe several inter-
esting findings. First, we were able to find six projects with flaky
tests, and a total of 86 flaky tests. More interestingly, however, is the
fact that 55% of these flaky tests failed just once, meaning that the
100 threshold might have limited the observation of flaky tests (i.e.,
it is likely that we could find more flaky tests if we run many other
executions). Second, we observed that the five machine learning
algorithms used had good performance in distinguishing flaky from
non-flaky tests. In particular, Random Forest had the best preci-
sion (0.99), while Support Vector Machine slightly outperformed
Random Forest in terms of recall (0.92 vs 0.91). Third, in terms of
the features used in the classifiers for improving performance, we
noticed that, for both Random Forest and Support Vector Machine,
perhaps surprisingly, most of the features in the classifier did not
have a visible impact on the results. Finally, regarding the vocab-
ulary of flaky tests, we noticed that words such as job, table, or
action (which are often associated with remote work) are among
the features with the highest information again.

7.1 Future work

We have plans for several other works along the lines of this work.
First, we plan to create tools that could help developers in iden-
tifying flaky tests. Initially, these tools could receive as input the
features we found with the highest information gain. These tools
could also allow developers to confirm whether a test is flaky or
not, and based on this decision, these tools could interactively im-
prove their own dictionary of flaky-related words. We also plan to
study how combination of different features could help improve
accuracy of our prediction models. Although many machine learn-
ing algorithms analyze such combinations internally, proposing
combination features explicitly may be helpful.

We also plan to do a qualitative study (using not only coding
techniques, but also instrumentation and debugging techniques)
over the sample of flaky tests we found, in order to properly rea-
son about the flakiness. Still, we also have plans to reproduce the
DeFlaker work [3]. In this paper, we found a very small number of
flaky tests, when compared to the DeFlaker work. A careful repro-
duction would enable us to understand why we observed so few
flaky tests and, consequently, how we could improve our approach

for finding flaky tests.
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