
C-3PR: A Bot for Fixing Static Analysis Violations
via Pull Requests

Antônio Carvalho∗, Welder Luz∗, Diego Marcı́lio†, Rodrigo Bonifácio∗, Gustavo Pinto‡ and Edna Dias Canedo∗
∗Computer Science Department, University of Brası́lia, Brası́lia, Brazil

†Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
‡Faculty of Computing, Federal University of Pará, Belém, Brazil

E-mail: rbonifacio@cic.unb.br

Abstract—Static analysis tools are frequently used to detect
common programming mistakes or bad practices. Yet, the
existing literature reports that these tools are still underused
in the industry, which is partly due to (1) the frequent high
number of false positives generated, (2) the lack of automated
repairing solutions, and (3) the possible mismatches between
tools and workflows of development teams. In this study we
explored the question: “How could a bot-based approach allow
seamless integration of static analysis tools into developers’
workflows?” To this end we introduce C-3PR, an event-based
bot infrastructure that automatically proposes fixes to static
analysis violations through pull requests (PRs). We have been
using C-3PR in an industrial setting for a period of eight months.
To evaluate C-3PR usefulness, we monitored its operation in
response to 2179 commits to the code base of the tracked projects.
The bot autonomously executed 201346 analyses, yielding 610
pull requests. Among them, 346 (57%) were merged into the
projects’ code bases. We observed that, on average, these PRs
are evaluated faster than general-purpose PRs (2.58 and 5.78
business days, respectively). Accepted transformations take even
shorter time (1.56 days). Among the reasons for rejection, bugs
in C-3PR and in the tools it uses are the most common ones.
PRs that require the resolution of a merge conflict are almost
always rejected as well. We also conducted a focus group to assess
how C-3PR affected the development workflow. We observed that
developers perceived C-3PR as efficient, reliable, and useful. For
instance, the participants mentioned that, given the chance, they
would keep using C-3PR. Our findings bring new evidence that
a bot-based infrastructure could mitigate some challenges that
hinder the wide adoption of static analysis tools.

Index Terms—C-3PR, static analysis, program manipulation
tools, bots in software engineering

I. INTRODUCTION

Static analysis techniques allow developers to inspect the
source code of a program without the need of running it.
After decades of research and industrial efforts, nowadays
static analysis tools play a key role in the programming
arsenal of modern software developers [1]. These tools not
only can detect common mistakes but also could prevent the
code base from falling into known traps that may lead to
bugs or other unwanted side-effects [2]–[4]. While warning
and suggesting fixes for the mistakes, these tools could also
potentially educate the developers to follow best development
practices [5].

Despite the recognized benefits of detecting source code
deviations, static analysis tools still bring limitations that hin-
der their widespread adoption. Recent research has highlighted

several problems of current static analysis approaches [4]–[7],
including: the lack of quick and automated fixes, overloading
developers with too many alarms at once, and the lack of team-
work support. For the first problem, Johnson and colleagues
discuss that the user interface of static analysis tools does
not clearly display the detected problems nor show how to
solve them [5]. Although existing research work suggests that
the capacity to offer quick fixes—possible automated solutions
to detected problems— is a highly desired feature [5], most
static analysis tools do not provide enough instructions for
developers to decide how to fix a reported issue and rarely
provide a fix to the potential problems. The lack of automated
fixes exacerbates when team members are unfamiliar with the
set of transformations that might fix the problems reported or
do not feel confident enough to do the changes.

For the second problem, overloading developers with too
many alarms at once, it was observed that static analysis tools
detect a high number of issues when first executed over an
existing program. According to Hanam et al. [4], this problem
corresponds to one of the main reasons developers decide not
to introduce static analysis in their workflow. This problem is
particularly discouraging when the number of false positives is
high, either because part of the reported issues are considered
irrelevant to the project or because they are incorrect or not
deemed useful [4], [8]. Finally, the lack of teamwork support
happens when developers do not always know if or how to fix
alarms by themselves.

Although some approaches have been proposed to mitigate
these problems (e.g., [9], [10]), in this work we provide our
visions and experience of using bots to find and fix static
analysis issues via pull requests. To this end, we introduce C-
3PR (Code Check and Correction via Pull Requests), a bot for
finding and fixing static analysis issues through source code
transformations submitted back as pull requests (PRs) [11].
The use of a bot for static analysis and program manipulation
seems promising because it can be integrated into the pro-
gramming activities without much change to the development
workflow [12]. In particular, if a bot can automatically run
static analysis tools and provide fixes, it liberates developers
from interrupting their regular tasks to execute such tools. This
aspect alone can increase the use of static analysis tools [5].

C-3PR aims to solve the three aforementioned limitations
of existing static analysis approaches by: (1) generating and



submitting small patches, (2) fixing only issues found in the
most recent modified code, and (3) fostering awareness of
the issues present in the code by creating pull requests in
the centralized source code repository, using a team-wide
configuration, and enabling discussion around the fixes via
the code review process.

The contribution of this paper is twofold. First we present an
in-depth technical description of C-3PR (Section III), a novel
approach to perform source code analysis and manipulation
using the pull-based development model. The source code
of C-3PR is available online https://github.com/c3pr. The
second is a comprehensive, mixed-method empirical study
about the practical usage of C-3PR (Sections IV and V) and
a discussion about the implications of using C-3PR in real
settings (Section VI). We have found that C-3PR fits well
in the popular pull-based development model, requiring little
effort from the developers. During a period of eight months,
C-3PR proposed 610 transformations directly fixing a total
of 346 source code issues and serving as an example for the
manual correction of many more. In a qualitative investigation,
we observed that developers perceived C-3PR as efficient,
reliable, and useful.

II. RELATED WORK

Extensive research has been developed around static analy-
sis tools, the use of bots in software engineering workflows,
and the pull-based development model—all subjects related
to our research. The following sections briefly introduce some
results close related to our work.

A. Static Analysis and Automatic Code Transformations

Static analysis tools aim to identify defects in source code
in an anticipated manner (i.e., without having to execute the
programs), and thus helping to increase software quality during
its development process. In combination with automatic code
transformations tools, these tools could not only identify viola-
tions, but also fix them. Existing research tries to characterize
the use of static analysis tools.

For instance, Johnson et al. [5] focus on the observed user
experience of static analysis tools. The authors highlight the
large number of warnings produced by static analysis tools as a
reason for their underused of them. Muske and Serebrenik [2]
also point that the large number of alarms usually reported by
the tools is one of the major obstacles to higher adoption.
The design of C-3PR tries to address this issue, focusing
on pull requests that target a single file with just one kind
of transformation. Therefore, C-3PR aims to not overwhelm
developers by showing a small set of fixes.

Layman et al. [13] identified the factors developers consider
when fixing alarms detected by static analysis tools. They
report that the frequency and content of the feedback provided
by the tool must match the developer’s goals and workflow,
otherwise, they may ignore the generated alarms. To integrate
to developers’ workflow, C-3PR submits pull requests as soon
as code is committed to the code repository, helping developers
to understand the purpose of the fixes Kim and Ernst [3]

explored prioritizing fixes by mining commits’ descriptions
of previous fixes to identify which warnings programmers
tended to fix. Similarly, Tripp et al. [14] proposed Aletheia, a
tool that applies statistical learning to prioritize issues based
on user feedback on a small set of warnings. To increase
its potential impact, C-3PR also prioritizes which warnings
are submitted as pull requests, using a simple though efficient
ranking algorithm.

The Tricorder ecosystem [9] is a static analysis approach
that is tightly coupled to the Google development model.
Among the results of an empirical assessment of Tricorder,
the authors report that the project-specific configuration of
tools lead to higher usage levels. Moreover, they point that
presenting analyses results during interactive sessions (such
as code reviews) can not only prevent new issues from
entering the code base, but are also found to be of high
educational value to the programmers. The authors suggest
that even simple checks can have a big impact in development
workflows.

B. Bots on Software Engineering

In the industry, bots [15], [16] have been developed to
take advantage of static analysis tools to automate checks
for coding standards violations and common defect patterns.
Research has found that these bots are able to greatly improve
the quality of code review, accelerating problems detection and
correction [17]. For instance, Tonder and Goues [18] discuss
what features a repair bot should entail. Their work includes
six principles about the patch generation and validation phases.
They also present several aspects the bots should consider
when integrating with human workflow. We considered these
aspects in our approach.

As an example, CCBot is a tool that applies contract-
based static analysis to existing code, including automatic code
transformation [19]. Pull request generation is the only manual
part of CCBot, being used to validate their approach. Also,
according to the results of an empirical assessment of CCBot,
the authors suggest that large patches tend not to be accepted.
Similarly, Repairnator is a bot that generates patches from
automatic analysis of source code [12]. The Repaginator’s
workflow include the patch generation, the review from a
human member of the project, and the creation of the PR.
Refactoring-Bot is a static analysis and transformation tool
that integrates into the development workflow via its existing
source control platform [20]. The approach we discuss in
this paper borrows some decisions of these previous work,
but is unique in several design decisions, including a ranking
algorithm that might even disable particular transformations
that are often rejected by the contributors of a project. We
also contribute with a more extensive empirical assessment
about the use of bots to automatically fix source code issues.

Recent studies predict that the usage of bots will still
increase in the next years, specially in fields related to software
engineering research. This will happen due to some of their
characteristics (such as scalability and centralized configura-
tion) that facilitate large scale application of novel scientific

https://github.com/c3pr


approaches to real work scenarios— a possibility that is yet
enhanced by the also growing social coding environments such
as GitHub [21]. We give more evidence that the use of bots in
software engineering might automate some activities without
necessarily changing the workflow of development teams.

C. Pull-based Development Model

The increasing use of distributed version control systems
(e.g., Git) and source code platforms (e.g., GitHub, GitLab)
changed the development workflows of many organizations.
This led to the pull-based development model, which encour-
ages collaboration by means of source code contributions in
specific development branches—even one development branch
per bug fix or feature. The contributions are then shared to a
central repository using pull requests. Existing research also
investigate the adoption of these new development models.
Gousios et al. [11] investigated more than 150 000 pull re-
quests from almost 300 projects hosted on GitHub. Although
they report a surprisingly low adoption (14%) of the pull-
based model among the studied projects, they also find that
most pull requests are small (20 changed lines or less) and
processed within one day. The decision to merge or not a
pull request is mainly influenced by whether the pull requests
modify recently contributed code, while the presence of tests
does not impact acceptance.

Gousios et al. [22] also investigates the challenges and
decisions on managing pull requests by the point of view of the
project’s core team (the pull request integrator). When survey-
ing 749 contributors, they found that they assess a contribution
based on its quality and fitness to the project’s roadmap. In
regards to source code, its quality and conformance to project
style architecture are major points when evaluating a pull
request. They also report that specific characteristics of a pull
request, such as clear descriptions of the contribution and its
commits, can positively impact the contributors’ perception of
quality. The C-3PR approach sends small pull requests that
target recently modified code. Each pull request provides a
detailed description of the source code changes. Moreover,
Saito et al. [23] researched how GitHub users feel about
pull-based development and noted that almost no developers
reported the GitHub pull request concept and interface as
difficult to use or understand. The familiarity that developers
have with pull requests and its interactions reinforces our
choice on the pull-based model.

III. C-3PR APPROACH

A. C-3PR Overview

C-3PR takes advantage of the pull-based development
workflow in which the generation of pull requests containing
code transformations becomes part of the daily activities. The
regular, continuous, automatic generation of PRs (and the
evaluation of how well they fit the development model) is a
core part of our research. With the focus on the pull-based
development model [24], C-3PR fits in any development
workflow (e.g., industrial projects and open source projects)
that supports PRs.

It is important to note that C-3PR does not implement
itself any static analysis or program transformation technique.
Instead, it has been designed with a modular architecture, ca-
pable of seamlessly integrating existing static analysis tools—
regardless of their language or runtime environment. Currently,
C-3PR is integrated with three different tools: ESLint, TSLint,
and WalkMod Sonar plugin. These tools have rules with
“autofix” templates, since we only integrate rules that the
tools could autofix. Altogether, these tools fixed more than
272 source code types of violations.

A particular goal of the C-3PR design is to provide use-
ful information about the rationale for each submitted pull
request. For this reason, we individually configure each tool
to include a message that should appear in the corresponding
pull requests. C-3PR also ranks the violations that should be
fixed. Rules that are often integrated into the code base have
a greater priority than the rules that are rarely integrated into
the code base.

B. C-3PR and Development’s Workflows

Prior to any execution, the C-3PR services should be
deployed, preferably in an elastic infrastructure. Next, C-3PR
needs to be configured to monitor the source code repository
(such as GitHub, BitBucket, or GitLab instances) of the
projects, via the creation of webhooks. After this configuration,
C-3PR integrates into the workflow, as depicted in Figure 1.

Fig. 1. C-3PR Workflow

Considering the workflow, in the first step the developer
works as usual, without any change in her activity. In the
second step, the developer commits and pushes changes to
a source code repository tool. In the third step, C-3PR,
which was watching for push events, detects the changes. In
the fourth step, C-3PR must decide what tools should be
executed. For that, it analyzes the project history of approval
and rejection of PRs. With this information, it creates a ranking
of the tools, giving a higher priority to tools that have a good
history of accepted PRs in that specific project. In the fifth step,
C-3PR runs the static analysis and program manipulation tools
over the changed files only, according to the order specified in
the previous stage. In the sixth step, whenever C-3PR detects
a fixable issue, it generates the patching code that fixes it.
Next, in the seventh step, C-3PR proceeds by creating a pull



request containing the patch (one PR per changed file), and
the explanation for why the previous (now improved) code
had a problem. Finally, in the eighth step, C-3PR watches for
the PR assessment (i.e., whether it has been merged or not),
using this decision to adapt the priority of the analysis rules
mentioned in step four.

C. C-3PR Design Principles

The main goal of C-3PR is to enable the integration
of existing static analysis and program manipulation tools
in a PR-based workflow. This creates challenges that can
affect how developers perceive the outputs of these tools.
Therefore, the way C-3PR handles these outputs have direct
consequences in the effectiveness of the tools themselves. For
this reason, C-3PR is designed to be extensible, providing
a simple way to integrate with existing static analysis and
program manipulation tools.

The design of C-3PR should also enable complex and
time-consuming program analyses (through the integration
of external tools) that might be impractical to directly run
within an IDE. These analyses might require strong computa-
tional resources, and thus would profit from an asynchronous
and elastic architecture. C-3PR should also support self-
adaptation, creating preferential rules for each project. C-
3PR currently ranks the most useful issues for a project,
according to the history of accepted or rejected PRs. With this,
C-3PR adjusts the priority of tools or even disable specific
transformations if they have a high rejection rate.

To address these principles, C-3PR follows an event-driven
architectural style called event sourcing. Figure 2 illustrates
the actors and interaction points of this architectural style in
C-3PR. We describe these actors in the following.

Fig. 2. C-3PR Main Actors.

C-3PR: represents the bot logic. The microservice that im-
plements it is called C-3PR Brain. C-3PR Brain handles the
commit notifications and triggers tool invocations as necessary.
C-3PR Brain also decides, via the ranking algorithm, what
tools should be run first for each commit. It also coordinates
the result of tool invocations and requests the creation of pull
requests, when necessary.

Source Code Platform: represents the repository tools (e.g.,
GitHub, GitLab, BitBucket). To understand commit notifi-
cations, C-3PR Brain implements “adapter” services that
translate the repositories’ webhooks into an standardized pro-
tocol the C-3PR Brain can understand. There must exist one
implementation for each source code repository tool. Each of
these services is called a C-3PR Repository.

Static Analysis Tools: represents the existing static analysis
tools, which are packaged in dedicated containers. To invoke
and report analysis back remotely, each of these containers
have an C-3PR Agent process that bridges the communication
between the C-3PR Brain and the actual static analysis tools.

D. C-3PR Architectural Building Blocks

C-3PR architecture comprises several high-level building
blocks, implemented as microservices and whose communica-
tion mainly rely on an event-driven style, as aforementioned.
Figure 3 portrays these building blocks and their interactions.

Fig. 3. C-3PR building blocks (implemented using microservices)

The general purpose service is the C-3PR Dashboard. It
displays in a dashboard-based UI the current system status,
the generated logs, the history of events, and other information
about the projects that C-3PR monitors. C-3PR Dashboard
keeps a data store with a snapshot of the current system state.
The other services are all stateless and depend exclusively
on the event history, building the current system state by
replaying relevant events when needed. This allows services to
have replicas created or destroyed at will, increasing system’s
availability and scalability.

The C-3PR’s cycle starts with a notification (in the form of
a webhook) of change in a given C-3PR Repository. In its
other end is the creation of a PR in the repository. Both web-
hooks and the process to create PRs are specific to each source
code repository. To decouple C-3PR’s core functionality from
the repository’ idiosyncrasies, a C-3PR Repository service
is implemented for each repository. C-3PR Repository first
listens for webhooks and emit ChangesCommitted events,
C-3PR specific protocol which also includes the commit hash,
repository URL, and the list of files that have changed. C-
3PR Repository then handles PullRequestRequested
events needed to create pull requests, e.g., forking a repository,
committing/pushing patches, and submitting the PRs with the
appropriate descriptions.

C-3PR Brain is the most important module. It works as the
process manager, by deciding which tools should be executed
in response to each change. C-3PR Brain also calculates the
projects preferences based on the project history, an auto-
configuration feature called the C-3PR ranking algorithm.



The C-3PR ranking algorithm considers events that might
affect the ranking. For instance, if there is no event telling
that a PR touching a given file was closed, the C-3PR Brain
understands that that PR is still open. When this occurs, no
tool is invoked for that file. This prevents opening multiple
PRs for a single file, which could lead to merge conflicts.
PullRequestUpdated event also listens to commands that
users send to the bot during the code review cycle. Examples
of commands C-3PR handles include:
• Disabling (or re-enabling) any future PRs from the rule

employed to create the pull request. The tool may disable
just a file or all files of the project.

• Increasing (or decreasing) the priority of a rule, resulting
in a tool being executed in a greater or lower frequency.
This can also be adjusted either for a file or all files.

• Specifying the reason for rejecting a PR. Letting the bot
know that the PR was closed due to, say, a manual in-
tervention, would prevent lowering the automatic priority
of tools with PRs rejected.

Notifications that a pull request has been merged or closed
are used as input to the ranking algorithm. The current ranking
algorithm implementation is detailed in Algorithm 1. Increased
weight means higher priority. The constants FBONUS and
PBONUS represent the weight (priority) gain a rule should
have—for the file and for the file’s project, respectively—when
a PR is accepted. Conversely, they are the weight lost when
a PR is closed (rejected). The values DTFF and DTFP are
disabling thresholds for files and projects. When a weight of
a rule reaches that threshold, it is disabled.

Algorithm 1: The C-3PR (priority) ranking algorithm
input: A weight table WF of size Rules × Files

A weight table WP of size Rules × Projects
A PullRequestUpdated event that triggers this algorithm

PR ← the pull request the event is about ;
Rule ← the rule that generated the PR ;
File ← the file that the PR changed ;
Prj ← the project File belongs to ;

if PR status is merged then
WF [Rule, F ile]← WF [Rule, F ile] + FBONUS;
WP [Rule, Prj]← WP [Rule, Prj] + PBONUS;

else if PR status is closed then
WF [Rule, F ile]← WF [Rule, F ile]− FBONUS;
WP [Rule, Prj]← WP [Rule, Prj]− PBONUS;

if WF [Rule, F ile] < DTFF ] then
disable Rule for File;

if WP [Rule, Prj] < DTFP ] then
disable Rule for Prj;

We recall that C-3PR does not directly implement any
kind of source code transformation to fix design and style
violations. The actual analysis of the source codes and any
patch generation that C-3PR supports rely on existing third-
party tools, exclusively. Since these tools have very specific
requirements, we deploy each tool in its own service container.
To connect these tools to the C-3PR platform, a C-3PR Agent
must be included in the containers. These agents are programs
that consume and produce C-3PR events. They also clone
projects locally, invoke the local static analysis tool via com-
mand line, and generate patches containing the transformations

generated by the tools, if any. Note that the pull requests that
C-3PR creates only include the transformation from existing
static analysis and program manipulation tools that had been
previously integrated into a C-3PR instance. Therefore, guar-
anteeing that the transformations do not introduce errors into
a project is currently a responsibility of each external tool.

To integrate a tool into C-3PR, it is necessary that such
tool allows the execution of individual rules on individual
files. This is so that C-3PR can know what transformation
originated each PR, so its weight is updated when that PR is
merged or closed. If, conversely, many transformations were
executed at once in a file, if the developer rejects the PR, C-
3PR has no direct way to exactly know which transformation
was actually rejected. This one-rule principle is aligned with
the findings in the literature that suggests that static analysis
transformations should not be overwhelming. That is, too
many suggested changes at once pose a challenge to program
comprehension, reducing the tools usage and, ultimately, their
effectiveness. For plugging a tool into C-3PR, the current
design requires the implementation of only two main compo-
nents: a Dockerfile containing the infrastructure the tool
needs to be executed and a YAML file specifying the metadata
of each transformation (including, for instance, the description
that C-3PR sends in the PRs).

IV. STUDY SETTINGS

A. Research Questions

Our goal with the C-3PR assessment is to answer the
following research questions:

RQ1 What is the performance of a bot-based approach for
fixing issues in a pull-based development workflow?

RQ2 How useful is the history of pull requests as an indicator
of the importance of each type of issues in a project?

RQ3 How does the C-3PR approach integrate existing tools
into development workflows, changing the perception of
the development teams about the usage of static analysis
and program manipulation tools?

To measure the performance of our approach (RQ1), we
collect information from the pull requests submitted by C-
3PR. If these PRs are being quickly accepted, or are being
merged at a regular interval, we could assume that the bot-
generated patches are found to be of value by the development
team. If the patches remain through long periods without
approvals, we can infer that the tool was not seamlessly
incorporated into the workflow.

Each project is unique in terms of its configuration and
adjusting configurations is one pain point of static analysis
tools [5], [9]. Automatic adaptation of the tool can greatly
improve this concern, optimizing it to each specific develop-
ment workflow and enabling its long-term, continued use as
the project evolves. To explore RQ2, we track and evaluate
the history of the generated transformations and how the
development team interacts with them. If some types of
transformations are always rejected, we can infer that those
specific transformations may not be important. We investigate



if this input can be used in an algorithm that automatically
prioritize tools for the team.

Pull requests meta-data is useful to understand the integra-
tion of C-3PR into the development workflow. Nevertheless,
there are other aspects that this kind of quantitative inquiry
could not capture properly. For RQ3, we conduct a focus
group with developers to assess how C-3PR impacted their
development workflow and how C-3PR changed their usage
and perception of usefulness of static analysis tools. The open-
endedness characteristic of the focus group research method
was the main reason for using it.

B. Settings of the Case Study

To answer (RQ1) and (RQ2) we executed C-3PR in two
opportunities. The first (pilot) run was from August to October
of 2018. During this run, eleven projects were configured to
use C-3PR; three of them received PRs. After a number of
bug fixes and platform improvements, the second run started
on June 2019. During the time of this writing, C-3PR is
still being used in real settings. For the purposes of this
work, the data collection process ended on October 18, 2019,
when we created a snapshot of C-3PR usage. At this last
reference date, 23 projects were being tracked, and 16 of
them received at least one PR. Between the two runs, the
development team had at any given time from 8 to 14 active
programmers, all co-located. They followed an agile approach
to project management, loosely based on Scrum [25]. GitLab is
the repository tool used, and the duration of feature branches
varies from one day to several weeks, typically taking two
weeks (the regular duration of a Sprint).

The development team uses a SonarQube server [26], with
default settings. The SonarQube analyses of the projects occur
as part of a continuous integration pipeline. The results of
the analyses are displayed in a dashboard, along with the
issues and a project quality gate (i.e., the set of quality
metrics, such as code smells and test coverage). Due to
internal practices, developers should be aware of the issues the
particular SonarQube configuration reports. Despite of that, the
team leader does not enforce these practices regularly, meaning
each developer follows the static analyses results according to
their own principles. While true for most projects, not all of
them had their builds configured to use SonarQube.

When C-3PR has been set up, we contacted the team
and gave them basic instructions on what would take place,
letting them know that C-3PR is a bot which would submit
pull requests with transformations that intend to improve
quality attributes in the source code. We also stimulated the
programmers to respond to these pull requests. This is an
important detail, as, depending on the team, the bot’s PRs
could be ignored. We present the results of the quantitative
assessment in Section V-A.

C. Settings of the Focus Group

Focus group is a research technique that collects data
through the interactions among members of groups working on
a particular topic of investigation [27]. According to Kontion

et al. [28], a focus group session often leads to qualitative
information about an object of study and typically comprises
between three and twelve participants. The main goal of
this technique is to understand the individual perceptions of
practitioners on a given context, by allowing researchers to
consolidate insightful information with a low cost and fast
execution. During our focus group section, we interacted with
three developers during a period of one hour. They are co-
located senior developers, working in the team where C-3PR
has been in use for the last five months. They use other static
analysis tools either integrated into their IDEs (e.g., IntelliJ
IDEA or Eclipse), on command-line programs (ESLint), or
executed and reviewed on demand (SonarQube).

We organized the focus group questions into four topics,
each comprised of a few questions that detail what we wish
to understand of the developers. The first intends to compare
how C-3PR relates to other static analysis tools the teams
already employ. More specifically, we presented the following
motivating question: “You know tools such as IntelliJ IDEA,
Eclipse, SonarQube, and ESlint. Now you know C-3PR. The
purpose of these tools is to standardize team practices, but
also to teach developers good practices. How do you think
these tools really support these two tasks? How is the bot
different from the others (better or worse) when it comes to
(a) achieve standardization within the team; (b) to point out
problems; and (c) to teach solutions to these problems?”

The second topic focuses on the relevance of C-3PR, in
terms of the transformations it currently supports. We then
presented the following questions: “Do you think the rules
presented by C3PR are pertinent? When you perceive a rule
as not useful, what do you do? What do you think can be
done? Do you consider it important that this feeling (useful
or not of the rule) is shared among team members? If so, how
do you make sure your feeling is actually shared?”.

The third topic address how developers perceive the relia-
bility of C-3PR. In this topic we investigate whether C-3PR
submit PRs that do not make sense or whether the development
teams trust on the modifications proposed by C-3PR. We
presented the following questions in this case: “Does C3PR
generate changes that make no sense (incorrect)? Do you trust
the tool? Why do you trust the tool? Do you feel that there is a
need to make sure yourself that the change does not introduce
bugs? Why do you feel that?”.

In our fourth and last topic, we aim to understand how
developers perceive the usefulness of C-3PR. In order to
gauge the C-3PR utility, we brought four questions: “What
would be the gains if C-3PR was withdrawn from the projects?
What would be the losses if the C-3PR was withdrawn from
the projects? Would you use C-3PR on other projects (outside
the work environment where it has been deployed to)? Would
you recommend C-3PR? Why would you recommend it? If
the power of decision were yours alone, would you keep it or
take it out? If you had to choose just one approach, would you
choose C-3PR for static analysis (or another one)? Please,
justify your question.”.

The first and second authors of this paper worked as “focus



group facilitators”. We conducted the focus group in three
steps. In the first step we presented each topic, then asked
the developers to write in paper their individual answer to the
posed questions. This was done to prevent one participant’s
point of view from influencing the others right from the start.
In the next step, we proceeded by reading each individual
answers and asking for their particular views and opinions. At
this moment, the participants begin to discuss their answers
and, with their interaction, work towards reaching a group
consensus. We recorded this resulting discussion and later
transcribed it. Lastly, in the final step we analyzed the obtained
material and generated the report we present in Section V-B.

V. RESULTS OF THE EMPIRICAL STUDY

In this section we present the results of the two assessments:
the case study using C-3PR (Section V-A) and the focus group
(Section V-B).

A. Results of Study I: A Case Study

As previously mentioned, C-3PR tracks commits of 23 dif-
ferent software projects. Table I summarizes our data. This ta-
ble presents the identification of each project (ID column) and
the corresponding number of lines of code (LOCS column). A
more detailed description of these projects could be found in
our companion website (https://github.com/c3pr/saner-paper).
It also features the number of opened PRs and their status
(either merged or closed). It is important to notice that we did
not integrate all projects with C-3PR at the same time, neither
developers contribute to these projects in the same frequency.
The number of commits (COMMITS column) gives an intuition
regarding projects’ activity during the period C-3PR was
active. Each project uses a different set of technologies, such
as Java, JavaScript, TypeScript, and VueJS. This is relevant to
select the appropriate rules C-3PR runs.

Regarding our first research question (What is the perfor-
mance of a bot-based approach for fixing issues in a pull-based
development workflow?), we can observe that a significant
number of static analysis rules have been invoked to check
the changed files for violation. Most interesting, many PRs
generated by C-3PR have been ultimately merged into the
code base, giving some evidence of its performance on the
organization.

A closer observation at the executed rules helps to under-
stand why some PRs were accepted and others were not.
During this case study, we integrated C-3PR with three
different tools (ESLint, TSLint, and Sonar WalkMod) that
support a total of 272 rules (e.g., Remove Useless Im-
ports, Use String Equals, or Static Initialized Field to Final)
that were autonomously invoked by C-3PR 201 346 times.
The Sonar WalkMod rules RemoveEmptyStatement,
AddSwitchDefaultCase, and StringCheckOnLeft
have been executed more than 6000 times each. The lat-
ter rule can mitigate null pointer exceptions in Java pro-
grams. Although running 6605 times, C-3PR generated
only 31 pull requests that fix the StringCheckOnLeft
rule (22 merged). Other not so invoked rules lead to a

TABLE I
SUMMARY OF PROJECTS ANALYZED BY C-3PR.

Id Pull Requests LOCs Commits
Rules

Invocations
Merged Closed Total

P1 25 (29%) 61 (71%) 86 16 777 131 8968
P2 0 0 0 1251 33 338
P3 2 (67%) 1 (33%) 3 15 815 91 810
P4 115 (50%) 113 (50%) 228 296 716 673 66 988
P5 3 (75%) 1 (25%) 4 934 37 1242
P6 1 (100%) 0 1 633 7 346
P7 0 0 0 17 420 38 1980
P8 9 (82%) 2 (18%) 11 7416 25 142
P9 6 (67%) 3 (33%) 9 2485 17 811
P10 13 (81%) 3 (19%) 16 7819 169 13 185
P11 9 (64%) 5 (36%) 14 22 419 101 8801
P12 0 0 0 2786 15 1653
P13 138 (70%) 58 (30%) 196 4534 557 73 344
P14 0 1 (100%) 1 357 1 38
P15 0 0 0 1534 1 19
P16 2 (100)%) 0 2 2166 54 892
P17 10 (40%) 15 (60%) 25 3054 170 17 858
P18 0 0 0 2887 5 962
P19 7 (100%) 0 7 2399 24 1874
P20 5 (83%) 1 (17%) 6 864 24 532
P21 0 0 0 2341 0 0
P22 0 0 0 9732 1 57
P23 1 (100%) 0 1 929 5 506

Total 346 (57%) 264 (43%) 610 423 268 2179 201 346

ESLint TSLint Sonar WalkMod

0
20

40
60

80
10

0

Integrated Tools

N
um

be
r 

of
 p

ul
l r

eq
ue

st
s

Fig. 4. Number of pull requests proposed by the different rules of each tool.

greater number of pull requests (for instance, C-3PR exe-
cuted TSLint:orderedimports 334 times and generated
92 pull requests). The maximum number of pull requests
came from the walkmodsonar:RemoveCodeComment
rule (102 PRs). Figure 4 summarizes the number of pull
requests from the different rules that each tool supports.
Among all available, 221 rules did not originate any PR (e.g.,
walkmodsonar:RemoveEmptyMethod). Considering all
rules, their average number of PRs is 11.96 (std dev: 22.68).

To analyze PR acceptance in greater detail, we adapted the
categorization of Marcilio et al. [8] to cover a wide spectrum
of issues:

• Bug: A possible syntactic mistake or logic error that will
likely break the code and should be fixed as soon as
possible.

• Vulnerability: A point in the source code that is open to
unwanted changes or attacks.

https://github.com/c3pr/saner-paper


TABLE II
CHECKERS EXECUTIONS AND RESPONSES GROUPED BY ISSUE TYPES.

Issue Type Pull Requests Runs/Analyses

Merged Closed Total Total % lead
to PR

Bug 2 (33%) 4 (67%) 6 6487 0.09%
Vulnerability 24 (60%) 16 (40%) 40 7325 0.55%
Code Smell 203 (52%) 191 (48%) 394 76 212 0.52%
Style 117 (69%) 53 (31%) 170 6188 2.75%

Overall 346 (57%) 264 (43%) 610 96 212 0.63%

• Code Smell: Ambiguous or otherwise confusing con-
structs that make the code difficult to maintain and should
be avoided.

• Code Style: Transformations that enforce consistent style
across the codebase.

Table II shows the types of issues C-3PR fix, how many
PRs it creates, and how the teams responded to them.

As one could notice, some types of issues are more strict
and tend to yield a smaller number of pull requests per number
of executions. There is a contrast between Code Style and Bug:
while only 0.09% of the bug rules generated a patch, 2.75%
of the style rules created a transformation. With regards to
our second research question (How useful is the history of
pull requests as an indicator of the importance of each type
of issues in a project?), our data shows that rules related to
Vulnerability, Code Smell, and Code Style present a similar
approval rate, above 50%.

Considering the two periods of this case study, a total of
610 PRs were generated in response to 2179 commits. Overall,
57% of the fixes were merged. Regarding the 264 closed (not
merged) PRs, we perceived that development team did not
necessarily deem them as useless. We collected the reasons
for rejecting a C-3PR PR, which we summarize in Table ??
and we discuss next.
• Bugs (74 occurrences). The most common reason for

rejecting the PRs was due to “bugs”, either on C-3PR,
on the integration of the tool, or on the tools themselves.
The high number of occurrences for this reason is due
to the nature of some bugs found in the development
phase of C-3PR. For instance, during a period of time,
a bug in the infrastructure caused every proposed PR to
have an empty diff, regardless of the originating tool. This
resulted in the rejection of all of the generated PRs while
the bug was not handled.

• Manual changes (46 occurrences). In this case, the
developer appreciated the suggestion, but wanted to per-
form the transformation manually rather than via the PR
interface. This happens, for instance, when the developer
intends to refactor the code affected by the PR, but wishes
to edit more aspects than the ones the bot is suggesting.

• Not useful (80 occurrences). The team may find a
given transformation not useful and reject it. For ex-
ample, when the bot removed a commented-out code
snippet that the developers actually wanted to keep. In

some circumstances, the disagreements are more around
minimal aspects of the transformation, such as resulting
indentation. Another example of this case is when the
developer agrees with all but one of the (several) changed
bits of the new code.

• Merge conflicts (46 occurrences). During our case study,
no PR that had a merge conflict was accepted. These
conflicts are typically caused by concurrent contributions
to the repository [29]. The longer the developer takes to
respond to a PR, the higher the chance it will enter into a
merge conflict status. Many situations where the PRs have
been closed as conflict were actually due to programmers
being hesitant to accept the transformation, rather than a
bad suggestion from C-3PR.

Moreover, we found that developers evaluate PRs from
C-3PR within a small time frame (2.58 days, on average).
Accepting a C-3PR PR is even faster: they are integrated in
1.56 days, typically. Contrasting, general-purpose PRs (i.e.,
those PR that have not been generated by C-3PR) take longer
to review: around 5.78 days to reach a conclusion. We found
a moderate to high correlation (0.68 using the Pearson rank
correlation test) between the number of PRs that have been
rejected from a given rule and the average interval in days to
review the PRs from the same rule. This might suggest that
rules that lead to PRs that are often rejected take more time
to review.

B. Results of Study II: A Focus Group

Throughout this section, we organize results in terms of the
topics of our focus group, as we discussed in Section IV-C.
Regarding the comparison with other tools, the participants
perceive the automatic fixing of issues as an advantage, in
contrast with the approach of other tools that only identify
issues. Even though other tools present descriptions about
rules and their possible fixes, those fixes are mostly examples,
serving as a guideline on what a possible fix might be.
The C-3PR approach, according to the developers, “is better
since it not only identifies an issue, but it gives a direct
solution, as opposed to passively report issues”. The approach
is beneficial because it reduces the space of possible fixes. As
one developer said: “One clear fix can prevent the team from
spending extra effort on figuring out multiple ways to solve
an issue”. Moreover, automatic fixes may be an efficient way
to deal with the often reported problem of ignored issues: “an
issue that has a fix is much harder to ignore than just a report”.

The pull request approach is mostly perceived as advanta-
geous as well. Even though an automatic fix shown directly
in the IDE provides a faster feedback cycle, fixes submitted
by pull requests can help standardize the team’s effort, as
developers’ IDEs might be configured differently, and, for
instance, report different issues. Also, PRs can be seamlessly
integrated with the team’s workflow in cases where it uses
a pull-based approach, which requires developers to visit
the source repository frequently. In addition, PRs serve as a
more accessible history log of the team’s decisions. “Spoken
discussion is good, but it gets lost with time. The PRs remain



in the repository and we can use it to assess how someone
has perceived a given issue in the past.”

Regarding the relevance of C-3PR developers reacted pos-
itively when commenting about the scope of the fixes: “it
is helpful that the fixes target recently committed code”. A
reported problem was that one of the fixes submitted by the
bot was in direct conflict with one rule checked by another
tool used by the project. This resulted in the bot submitting
multiple undesired pull requests. The involved developer later
became aware that C-3PR could be configured to ignore
specific files, which was enough to solve the same situation
when another developer experienced it. Furthermore, this
customization is already present in the other tools used by
the team. Whether C-3PR should submit or not pull requests
for already rejected fixes was a point of discussion among the
developers. While one argued that the bot should stop fixing a
rule after its first rejection, others argued that a fix judged
unnecessary in a scenario might be useful in others. They
agreed that C-3PR’s ranking algorithm is a potential good
way to deal with scenario.

Developers missed a feature that allows the addition of
custom rules. This feature could greatly improve the relevance
of the bot by enforcing adherence to the team’s style guide.
The discussion fostered by the submitted pull requests was
also very debated by the team members. They reported that
the team should reach consensus when deciding whether a
pull request should be accepted or not. In order to achieve
agreement, they actively discussed the fixes and their rules.
The discussions also improved individual developers’ under-
standing of some of the rules, as one state that “C-3PR
allows me to evolve my views and even change my mind”.
While their discussions were mostly face to face, due to
the aforementioned team’s co-locality, the open pull requests
served as a starting point to the discussions.

In terms of reliability, the participants stated that the trans-
formations were usually correct, and they did not have to man-
ually modify the PRs. In the few cases where modifications
were needed, the problems were obvious. Developers praised
the small and targeted nature of the transformations, which
might explain the easiness to spot problems. Interestingly, one
of the participants stated that he feels the need to carefully
check every PR, mostly because he has a “general bad feeling
towards any automated transformation tool, because software
quality can be a very subjective matter and false positives are
unavoidable”.

When asked if they trusted the bot, developers did not reach
consensus. The two that trusted C-3PR described their overall
experience with C-3PR as beneficial: “Almost all of the fixes
were accepted. Even rejected suggestions were still useful”.
Regarding false positives, one developer pointed out that tools
with this purpose usually require some customization, such
as deactivating rules to reduce false positives. One participant
argued that the PR itself is a mechanism to deal with false
positives: “If all the transformations were correct, the bot
should just commit directly to the source code repository.”

Regarding usefulness, all participants stated that, given the

chance, they would keep using the bot. They highlighted
the discussions originated by the bot’s PRs: “The discussions
around PRs, in person or via comments, fostered team maturity
and promote knowledge sharing.” One added that C-3PR
integrated well with the project’s workflow since they already
use PRs to integrate new code. They concluded that the
bot might not be welcomed on teams that do not use PRs,
though C-3PR might be most beneficial in projects that have
larger teams: “With smaller teams, the infrastructure costs
of deploying the bot might not be worth it. Linters provide
fast enough feedback.” But with larger projects and teams, the
bot would certainly outweigh its costs: “With more members
committing code, automatic approaches start to shine.”

VI. DISCUSSION

The findings of the case study reveal that a bot-based
approach is effective for fixing source code issues over a
pull-based development model (RQ1). In eight months of
use, C-3PR generated more than 610 PRs with fixes to the
source code, and 346 of these PRs have been integrated into
the code base. We believe that part of these issues would
not have been fixed without the use of C-3PR. Our results
also reveal that the feedback from PRs, not only in terms
of acceptance rate, but also w.r.t. the reasons for closing
a PR, is a relevant information to (a) customize the use
of static analysis tools in real settings and (b) to obtain a
general overview of the types of issues that might better
characterize the quality of individual projects. This is our
answer to our second research question (RQ2). The results
of the focus group are also promising, since, according to
the participants of the study, C-3PR seamlessly integrate to
the pull-based development model of the teams. Although one
participant is skeptical about the use of automatic program
transformations for fixing source code issues, they all agree
that the PRs from C-3PR are useful for improving the quality
of the systems—answering our third research question (RQ3).
Our assessment generated many findings. Some of them are
objective, like the definitive code changes in result to accepted
PRs, while others are subjective, such as effects on team
members behaviors and overall team culture. Notwithstanding,
the C-3PR usage has generated some insights that we discuss
in the next subsections.

A. Impact on Teams

C-3PR affected the team workflow just as it affected each
individual developer’s workflow. The only additional impact,
exclusive to teams, was that some transformations suggested
by the bot sparked discussions that involved multiple team
members. At first, we were expecting that the interaction
would take place mainly via comments in the PR’s web
interface. This was not observed. In our case study, because
the team was co-located, these conversations happened mostly
face to face. In a distributed work environment, where pro-
grammers would most collaborate remotely, we expect the
PRs to generate much more comments directly in the source
code platform interface. The outcome we observed seems



natural, for we know the impact of static analysis tools is
very workflow dependent.

We also observed that some programmers almost did not
engage in discussions about the static analyses. These pro-
grammers in general took longer to respond to the PRs. On
the other hand, we perceived that some team members were
significantly more critic about suggestions from the bot and
engaged in discussions much more frequently than the others.
Although it was a small team, we also noticed that these
members were the ones that actually had static analysis tools
setup in their IDEs and workstations. From this perspective,
the bot can be seen as tool that normalizes the environment
for the team. Lastly, the bot can also be seen as a promoter
for code reviews, even for teams do not have that culture.

B. Elements of PR design

Our study brought to light different aspects that could
improve PRs design generated by static analysis tools. They
are:
Pull Requests text description must be short. Long texts
tend to not be read and to miss the point of the transformation.
Also, after some time, PRs with the same text (because they
fix the same rule) begin to repeat.
Code samples in the PR descriptions are important. Even
though the PR preview is a code sample, some short examples
in the description also help greatly. Code snippets are good
because they are quick to see.
Include links to more info. Developers may want to dive
deeper into the details of the suggested transformation. Al-
though they can always resort to a web search on the subject,
the link can guide them in the right direction from the start.
Ability to disable analysis on files is mandatory. Projects
frequently have files that are not subject to the same quality
standards of the rest of the code. PRs created to these files
are usually automatically closed for many reasons (e.g., the
team wants to keep the tangled code because of performance
requirements).
Merge conflict == PR rejection. In our case study, every
C-3PR-created PR that would result in a merge conflict was
rejected. The main reason is the effort to fix them was usually
deemed too great to be worth it.

C. Additional lessons

The bot entering the workflow comes with a cost. Objec-
tively, there are always upsides and downsides. These are
the ultimate effects our study showed the bot may have
generated in the workflow. A positive aspect is that many PRs
were merged. Although it is true that developers may have
accepted some of them due to peer pressure, the existence of
rejected PRs and the high number of accepted transformations
is an indicative that the ones accepted were indeed useful.
Surely, as a negative side, some transformations were rejected,
and developers might have spent time reviewing not useful
transformations. Based on the feedback from the focus group,
the bot fostered more complete code reviews and discussion

around code, and thus pull requests exclusively fixing code
smells can be seen as a reminder that non functional details,
such as code quality, are important. Finally, the bot simplified
issue removal by showing examples. Static analysis tools may
be deemed abstract by those that have not been introduced to
the concept. The PRs bridge that gap by effectively showing
what the code was and what it should be. The reasons behind a
transformation may be subjective, but the example the preview
shows is direct and provides clear vision of what the new code
looks like.

VII. THREATS TO VALIDITY

As any empirical study, this one also has limitations and
threats to validity. Our first concerned is the internal validity,
i.e. the relationship between causes and effects. In this regard,
we wanted to know if the issues fixed via the bot would not
have been fixed otherwise. In order to minimize this threat,
we ran C-3PR for an extended period of time (8 months
over a period of 2 years), with varying members in the team
and diverse project configurations. The continuous creation
and regular approval of PRs over the experiment suggest the
occurrence of issues was not particular to a given point of
time. This shows the other tools in place were consistently
leaving a quality gap that C-3PR was able to partially fill.

To maximize external validity — the ability of general-
ization of our results —, we kept the workflow the least
modified possible. That is, when adding C-3PR, we did not
remove any other tools or impose any other new processes
other than letting the team know PRs would be automatically
created. Additionally, the team members had varying skill
levels, the projects also had different levels of quality, amount
of lines of code, and ages. We recall that our approach relies
heavily on the use of PRs. Given this scenario, familiarity
of the developers with the source code platform interface
should be considered. The developers in our case study were
already used to the PR web interface. Teams that don’t have
such familiarity will certainly face additional challenges when
adopting the bot.

VIII. CONCLUSION

We presented the design, implementation, and assessment
of C-3PR, a bot-based approach that integrates static analysis
and program transformation tools into the pull-based develop-
ment model. Considering the results of a mixed-method study
(a case study and a focus group), we found evidence that
C-3PR is effective for recommending fixes to source code
violations without significantly changing the development
workflows. In particular, throughout a usage period of eight
months in real settings, C-3PR submitted 610 pull requests,
from which 346 (57%) were ultimately merged into the code
base. Our study also revealed a set of lessons learned about
the use of bots to program repair.

Acknowledgments

We thank the reviewers for their helpful comments. This
work is partially supported by CNPq and FAPESPA.



REFERENCES

[1] U. Campos, G. Smethurst, J. P. Moraes, R. Bonifácio, and G. Pinto,
“Mining rule violations in javascript code snippets,” in Proceedings
of the 16th International Conference on Mining Software Repositories,
MSR 2019, 26-27 May 2019, Montreal, Canada., 2019, pp. 195–199.

[2] T. Muske and A. Serebrenik, “Survey of Approaches for Handling Static
Analysis Alarms,” in 2016 IEEE 16th International Working Conference
on Source Code Analysis and Manipulation (SCAM), Oct. 2016, pp.
157–166.

[3] S. Kim and M. D. Ernst, “Which Warnings Should I Fix First?”
in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ser. ESEC-FSE ’07.
New York, NY, USA: ACM, 2007, pp. 45–54. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287633

[4] Q. Hanam, L. Tan, R. Holmes, and P. Lam, “Finding Patterns in Static
Analysis Alerts: Improving Actionable Alert Ranking,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 152–161. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597100

[5] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
Don’t Software Developers Use Static Analysis Tools to Find Bugs?”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 672–681. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486788.2486877

[6] T. Muske, R. Talluri, and A. Serebrenik, “Repositioning of static analysis
alarms,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2018, 2018,
pp. 187–197.

[7] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of java reflection: Literature review and empirical study,” in
Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE ’17, 2017, pp. 507–518.

[8] D. Marcilio, R. Bonifácio, E. Monteiro, E. D. Canedo, W. P. Luz, and
G. Pinto, “Are static analysis violations really fixed?: a closer look at
realistic usage of sonarqube,” in Proceedings of the 27th International
Conference on Program Comprehension, ICPC 2019, Montreal, QC,
Canada, May 25-31, 2019, 2019, pp. 209–219.

[9] C. Sadowski, J. v. Gogh, C. Jaspan, E. Söderberg, and C. Winter, “Tri-
corder: Building a Program Analysis Ecosystem,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1,
May 2015, pp. 598–608.

[10] M. F. C. Nazário, E. Guerra, R. Bonifácio, and G. Pinto, “Detecting
and reporting object-relational mapping problems: An industrial report,”
in 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2019, Porto de Galinhas, Recife,
Brazil, September 19-20, 2019, 2019, pp. 1–6.

[11] G. Gousios, M. Pinzger, and A. v. Deursen, “An Exploratory Study
of the Pull-based Software Development Model,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 345–355. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568260

[12] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a pro-
gram repair bot?: Insights from the repairnator project,” in Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’18, 2018, pp. 95–104.

[13] L. Layman, L. Williams, and R. S. Amant, “Toward Reducing Fault Fix
Time: Understanding Developer Behavior for the Design of Automated
Fault Detection Tools,” in First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), Sep. 2007, pp.
176–185.

[16] “linthub.io - lint your pull requests automatically.” [Online]. Available:
https://linthub.io/

[14] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “ALETHEIA:
Improving the Usability of Static Security Analysis,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 762–774.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660339

[15] J. Abrahms, “imhotep: A static-analysis bot for Github,” Aug.
2017, original-date: 2012-12-17T01:26:32Z. [Online]. Available: https:
//github.com/justinabrahms/imhotep

[17] V. Balachandran, “Reducing Human Effort and Improving Quality
in Peer Code Reviews Using Automatic Static Analysis and
Reviewer Recommendation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 931–940. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486915

[18] R. van Tonder and C. L. Goues, “Towards s/Engineer/Bot: Principles for
Program Repair Bots,” in Proceedings of the 1st International Workshop
on Bots in Software Engineering, ser. BotSE ’19. Piscataway, NJ,
USA: IEEE Press, 2019, pp. 43–47, event-place: Montreal, Quebec,
Canada. [Online]. Available: https://doi.org/10.1109/BotSE.2019.00019

[19] S. A. Carr, F. Logozzo, and M. Payer, “Automatic Contract Insertion with
CCBot,” IEEE Transactions on Software Engineering, vol. 43, no. 8, pp.
701–714, Aug. 2017.

[20] M. Wyrich and J. Bogner, “Towards an autonomous bot for
automatic source code refactoring,” in Proceedings of the 1st
International Workshop on Bots in Software Engineering, ser. BotSE
’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 24–28. [Online].
Available: https://doi.org/10.1109/BotSE.2019.00015

[21] I. Beschastnikh, M. F. Lungu, and Y. Zhuang, “Accelerating Software
Engineering Research Adoption with Analysis Bots,” in Proceedings
of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track, ser. ICSE-NIER ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 35–38. [Online]. Available:
https://doi.org/10.1109/ICSE-NIER.2017.17

[22] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
Practices and Challenges in Pull-based Development: The Integrator’s
Perspective,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 358–368. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818800

[23] Y. Saito, K. Fujiwara, H. Igaki, N. Yoshida, and H. Iida, “How do GitHub
Users Feel with Pull-Based Development?” in 2016 7th International
Workshop on Empirical Software Engineering in Practice (IWESEP),
Mar. 2016, pp. 7–11.

[24] G. Gousios, M. A. Storey, and A. Bacchelli, “Work Practices and
Challenges in Pull-Based Development: The Contributor’s Perspective,”
in 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), May 2016, pp. 285–296.

[25] K. Schwaber, Agile project management with Scrum. Microsoft press,
2004.

[26] S. A. SonarSource, “SonarQube: Code Quality And Security Tool,”
http://www.sonarqube.org, 2019.

[27] D. L. Morgan, “Focus groups,” Annual review of sociology, vol. 22,
no. 1, pp. 129–152, 1996.

[28] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as
an empirical tool in software engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjøberg, Eds. Springer, 2008, pp. 93–116. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5 4

[29] P. R. G. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-
structured merge conflict characteristics in open-source java projects,”
Empirical Software Engineering, vol. 23, no. 4, pp. 2051–2085, 2018.

http://doi.acm.org/10.1145/1287624.1287633
http://doi.acm.org/10.1145/2597073.2597100
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://doi.acm.org/10.1145/2568225.2568260
https://linthub.io/
http://doi.acm.org/10.1145/2660267.2660339
https://github.com/justinabrahms/imhotep
https://github.com/justinabrahms/imhotep
http://dl.acm.org/citation.cfm?id=2486788.2486915
https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/ICSE-NIER.2017.17
http://dl.acm.org/citation.cfm?id=2818754.2818800
https://doi.org/10.1007/978-1-84800-044-5_4

	Introduction
	Related Work
	Static Analysis and Automatic Code Transformations
	Bots on Software Engineering
	Pull-based Development Model

	C-3PR Approach
	C-3PR Overview
	C-3PR and Development's Workflows
	C-3PR Design Principles
	C-3PR Architectural Building Blocks

	Study Settings
	Research Questions
	Settings of the Case Study
	Settings of the Focus Group

	Results of the Empirical Study
	Results of Study I: A Case Study
	Results of Study II: A Focus Group

	Discussion
	Impact on Teams
	Elements of PR design
	Additional lessons

	Threats to Validity
	Conclusion
	References

