
An Experience Report on the Adoption of Microservices in �ree
Brazilian Government Institutions

Welder Luz

Brazilian Federal Court of Accounts

Brası́lia, Brazil

Everton Agilar

Computing Center

University of Brası́lia

Brası́lia, Brazil

Marcos César de Oliveira

Ministry of Planning, Development and

Management

Brası́lia, Brazil

Carlos Eduardo R. de Melo

Ministry of Planning, Development and

Management

Brası́lia, Brazil

Gustavo Pinto

Federal University of Pará

Belém, Brazil

Rodrigo Bonifácio

University of Brası́lia

Brası́lia, Brazil

Abstract
Although monolithic applications are still the modus operandi of

many so�ware systems, the microservices architecture, which fa-

vors small and independent applications, is gaining increasing pop-

ularity. �is is part due to its claimed bene�ts, which includes

be�er scalability, productivity, and maintainability. However, li�le

is known about how developers and architects perceive the bene�ts

of migrating from monolithic applications to microservices, and

what are the challenges towards achieving them. In this paper we

discuss the motivation, bene�ts, and challenges related to the migra-

tion from monolithic enterprise architectures to a microservices based
architecture. We report several lessons learned that arose from a

two years process faced by three Brazilian Government Institutions.

We also cross-validate these �ndings with a survey conducted with

13 practitioners in the studied companies. �e results of our investi-

gation highlight some evidence that the adoption of microservices

brought several bene�ts for these institutions, such as (a) reduc-

ing development time and risks related to deployment activities

and (b) increasing the opportunities to experiment with di�erent

technologies and development models (such as hackathons). How-

ever, our observations reveal that the adoption of microservices is

still a challenging task, mainly because it not only demands the

understanding of new techniques and tools, but it also increases

the need to automate tasks related to so�ware deployment and

so�ware monitoring. �is study is particularly relevant for insti-

tutions interested in adopting a so�ware architecture based on

microservices, and we are currently sharing our experiences with

other institutions.

CCS Concepts •So�ware and its engineering →So�ware ar-
chitectures; So�ware post-development issues; Empirical so�-
ware validation;

Keywords monolithic applications, microservice applications, ex-

perience report, lessons learned

ACM Reference format:
Welder Luz, Everton Agilar, Marcos César de Oliveira, Carlos Eduardo R. de

Melo, Gustavo Pinto, and Rodrigo Bonifácio. 2018. An Experience Report on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

SBES’18, São Carlos, Brazil
© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $-

DOI: 10.1145/nnnnnnn.nnnnnnn

the Adoption of Microservices in �ree Brazilian Government Institutions.

In Proceedings of 32nd Brazilian Symposium on So�ware Engineering, São
Carlos, Brazil, 17 – 21 September, 2018 (SBES’18), 10 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Developing monolithic enterprise systems brings several challenges

related to maintenance, scalability, and lack of autonomy of develop-

ment teams to adopt new technologies that diverge from the under-

lying architecture [6]. Although companies have invested a lot of

resources to build monolithic enterprise systems, currently there is

a trend to develop systems using the composition of microservices,

that is, small pieces of cohesive and autonomous so�ware [20].

Microservices are a relatively new architectural style in the realm

of so�ware development strategies. It allow developers to decom-

pose a so�ware in terms of small deployable units, which is in sharp

contrast with enterprise system architectures that o�en comprise a

single deployable component. �e microservices deployment units

are autonomous, and thus they can be deployed in small and iso-

lated services, according to the Single Responsibility Principle [15].

As we shall see in Section 2.1, one of the expected bene�ts of mi-

croservices is the ability to independently deploy individual sets of

services, reducing the downtime of other parts of a system. Other

expected bene�ts include improvements on scalability, maintain-

ability, and productivity of development teams [3]. Microservices

is also commonly associated as an enabler of other so�ware devel-

opment practices such as DevOps [4, 12, 14].

In this paper we present an experience report based on a two-

years adoption process of microservices-based architecture in three

Brazilian Government Institutions, namely:

(a) the Brazilian Federal Court of Accounts (herea�er TCU);

(b) the Brazilian Ministry of Planning, Development, and Man-

agement (MP), and;

(c) the Computing Center of University of Brası́lia (CPD/UNB).

�ese thee institutions faced di�erent needs that motivated them

to adopt microservices, including a rigid monolithic architecture,

the lack of freedom from the development teams to explore new

technologies, and issues such as code duplication and redeploy-

ments of entire applications. It is important to note that these

institutions di�er signi�cantly from tech companies (we discuss

these key di�erences at Section 2.2) and consequently represent

a new dimension of potential microservices-based architecture

users that are not yet fully understood. To be�er understand the

SBES’18, 17 – 21 September, 2018, São Carlos, Brazil W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, R. Bonifácio

challenges that these institutions faced when transitioning to a

microservices-based architecture, we performed two studies.

In the �rst study, we started with a qualitative observational re-

search [9] that aims to “understand how (lead architects) interpret

their experiences (with the adoption of microservices)”. To this end,

we promoted round tables, played development roles, observed

and collected information from lead architects of the three institu-

tions, which are migrating from monolithic so�ware architectures

to an architecture based on microservices. During the course of

this observation, we decided to report their perceptions (and the

perceptions of their colleagues) about (a) the motivations that had

led decision makers, so�ware architects, and so�ware developers

to adopt microservices at their institutions, (b) the technical deci-

sions they have been taking, and (c) the challenges they have faced

during the migration process.

In the second study, we conducted a survey with so�ware ar-

chitects and developers of the same three institutions, in order to

cross-validate the results of the �rst study. �e goal of this survey

was to (1) proper evaluate, a�er the core of the adoption process, the

perceived bene�ts and challenges faced and (2) to quantify whether

or not our observations from the �rst study were accurate. To this

end, we elaborated an online questionnaire that we made available

during two weeks to our colleagues of the three institutions that

also participated (less actively, though) in the migration process.

Altogether, this paper makes the following contributions:

• A two years observation from inside three di�erent institu-

tions that were dealing with the need to migrate towards

microservice-based architecture;

• A survey with 13 practitioners that promoted and partici-

pated in the migration towards microservice-based archi-

tecture;

• A discussion of the obtained results in terms of lessons

learned and claims potentially relevant for further investi-

gations.

2 Background
Here we provide the grounds for understanding microservices-

based architecture (Section 2.1), and some descriptions about the in-

stitutions that we conducted our study as well as the target so�ware

systems that motivated the migration towards microservices-based

architecture (Section 2.2).

2.1 Microservices-based architecture
Microservices are a relatively new architectural style in the realm

of so�ware development strategies. It allows to build a so�ware

application design as suites of services that are independently de-

ployable. In contrast, Enterprise Applications are typically built

as a monolithic deployment unit, that is deployed in a application

server and every change in the code demands a new build and

deploy of the entire application. Figure 1 presents an example of a

video sharing platform using a monolith deployment unit (on the

le�), and the in the form of microservices (in the right).

In the microservices-based architecture, each unit (or service)

has a speci�c role, and a service communicates to another service

o�en over the HTTP protocol. �is architectural style could yield

several potential bene�ts, including:

Monolithic Microservices

Video Sharing
Platform

Upload Streaming

Download Transcode

Payment Subscription

Figure 1. An example of a monolith application (on the le�) and a

microservices application (on the right).

Independent development. Since the development is now

concentrated in small, independent units of working so�-

ware, so�ware teams can work them independently. For

instance, one so�ware team can work on the “Payment” unit

without interfering or even knowing the existence of the

“Download” unit. �is separation of services might incur in

less con�icts and communication issues. Moreover, a given

unit can be implemented in a more appropriated program-

ming language, with enables developers to fully explore the

bene�ts of other programming languages, frameworks, and

tools.

Independent deployment. Since the units are small and

independent, and potentially wri�en in di�erent program-

ming languages, they can be deployed in di�erent contain-

ers and services at di�erent times. �is bene�t fosters rapid

releases of features, con�guration changes, or bug �xes in

a sustainable and e�cient way [12]. As an example, there

is no need to suspend the whole system activity to deploy

the �x of a bug at the “Subscription” unit.

Independent scalability. Since deployments are indepen-

dent, each unit can be scaled independently. If one unit

is facing more demands than another unit (e.g., if a new

movie is just released, the “Download” unit might be more

demanded), such a unit can be scaled up, e.g., in an on-

demand cloud platform, to handle the increased load. �ere

is also a monetary gain in this approach: since one does not

need to scale up the entire application, a fewer number of

virtual machine (or containers) instances might be needed

to meet demand.

Although many other bene�ts have been claimed and discussed

(particularly in the grey literature
1
), such as code reusability and

maintainability, decreases the learning curve, avoids long-term

commitment to a single technology, there are few studies assessing

whether these bene�ts are indeed perceived in practice and, if so,

what are the challenges that so�ware companies face to achieve

them. �e goal of this work is to provide more empirical evidence

that could support (or even refute) the use of microservices-based

architecture.

2.2 Studied Institutions
�e three institutions where we developed our work are public,

well-known, and long-lived Brazilian institutions. As any public

institution in Brazil, most of their budget come from the Federal

1
For instance, h�ps://dzone.com/articles/benefits-amp-examples-of-microservices-architectur

https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur

An Experience Report on the Adoption of Microservices SBES’18, 17 – 21 September, 2018, São Carlos, Brazil

and/or State budget. As a consequence of the current scenario

of limited budget, aligned with the conservative political views

that drive these institutions, such public institutions o�en do not

have the freedom to explore new so�ware solutions, making them

hostage of aged, ill-tailored technology stack. Moreover, since the

employees of these institutions have permanent stable positions,

these institutions they hardly face the issues found in Silicon Valley

tech companies (e.g., that face issues related to job rotation [17])

or open source communities (e.g., that face issues related to bus

factor [7]). �ese facts make the studied institutions particularly

relevant to the scope of this study since the lessons learned from

prior work might not be easily transferred to them.

As another reason towards the use of microservices, this archi-

tecture was perceived as bene�cial since the development team do

not need to throw away the existing system in order to replace for

a newer so�ware solution (which would be a luxury prohibitively

expensive). Instead, the so�ware team could steadily introduce new

services that could replace small parts of their so�ware systems,

e.g., following the strangler application pa�ern [18]. In this pa�ern,

a monolithic architecture is slowly replaced with a more componen-

tized one. During the transition process, the new componentized

architecture may delegate tasks to the system it is replacing. Over

time, the old system is strangled in favor of the new one.

Although all studied systems are proprietary by nature, we could

provide some quantitative details about the SIOP system, which is

develop by MP (more details at Section 4.1.2). �is monolithic sys-

tem is one of the most important �nancial systems of the Brazilian

Government, which two of the authors have contributed signi�-

cantly. It is wri�en in Java, and is under development since 2009.

It has 521KLOC, 241 packages, and 5.6K classes. Regarding code

contributions, it has more than 12K commits and 3K issues.

3 Method
In this section, we describe the research questions (Section 3.1)

and the research method we used in the two conducted studies

(Section 3.2 and Section 3.3).

3.1 Research�estions
As a �rst step towards our research goal, we designed the following

research questions:

RQ1. What are the reasons that motivate each institution to

adopt a microservice-based architecture?

�is �rst research question explores the di�erent reasons that

motivated the studied institutions to explore other possible archi-

tecture alternatives, including the microservice-based one. �is

research question is particularly relevant due to the context within

our studied institutions are se�led, which is far from representing

a traditional so�ware development company.

RQ2. Which were the main technical decisions taken to leverage

the microservice-based architecture?

In this research question our goal is to uncover the di�erent

technical decisions that the so�ware development teams had to

made in order to leverage a microservice-based architecture. Since

such a transition had to be made smoothly and with minimum

overhead, one might expect that the technical decisions were made

in a conservative way (e.g., employing a similar so�ware stack). In

this research question we explore this belief.

RQ3. What are the bene�ts the institutions perceived during

the adoption of microservices?

RQ4. What are the challenges the institutions faced during the

adoption of microservices?

Finally, these two set of questions (RQ3–RQ4) are intended to un-

cover some bene�ts related to this adoption and hidden challenges

that were perceived throughout this process.

To answer these research questions, we conducted two studies:

a self-observational study and a survey with other developers that

participated in the transition.

3.2 Study 1: A Self-Observation
In this �rst study, we report an observational study. In this method,

the research is both an observer and a participant in some activities.

Although so�ware engineering researchers are only recently taking

advantage of it [13], this method is well-known and well-used in

other disciplines [9]. In spite of the fact that this method has many

strengths (e.g., it can provide unique set of views that could not be

perceived from external eyes), it also has limitations (e.g., it presents

a single perspective and it is rather subjective). To mitigate some of

these limitations, as we shall see in Section 3.3, we triangulate the

�ndings of this study with a survey answered by other participants

that also played important roles in these institutions.

In this observational, self-examination study, we describe a 24
months participation of ourselves playing the role of so�ware

architects in the three studied institutions. To study our experiences,

we had several meetings and round tables with other institutions’

representatives, archived dozens of emails and several diaries, and

performed many informal interviews with colleagues. We then

analyzed the results of the meetings, round tables, emails, and

interviews to con�rm or refute challenges and claims regarding the

transition to a microservice-based architecture.

Our diaries and emails spanned the work from 2016 to 2018. �e

three institutions joined the transition to microservices at di�erent

time-window and were motivated by di�erent needs (Section 4.1 dis-

cusses the needs in details). However, the three institution referred

to the University of Brası́lia (UnB) in order to further substantiate

their background and, consequently, their technical decisions that

could lead them to a be�er architecture. A researcher from UnB

was then dedicated to support the institutions to achieve their goals.

�e observations reported in this paper represents the point of view

of one researcher (that also played a so�ware architect role) and

three so�ware architects (that became more involved with so�ware

engineering research).

3.3 Study 2: Survey with Developers
A�er we concluded a relevant part of the transition towards the

microservices-based architecture, we conducted an online survey

with developers of the three institutions. �e goal of this survey

was to enrich our understanding about the consequences of the

architectural migrations discussed in the following sections of this

paper. In particular, we aimed to understand the perceptions of

SBES’18, 17 – 21 September, 2018, São Carlos, Brazil W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, R. Bonifácio

so�ware architects and developers of the three institutions about

the adoption of microservices in their environment.

�e target population of this second study are so�ware devel-

opers that have contributed to the migration e�ort or that have

developed microservices there. Based on our initial knowledge of

the adoption of microservices in the three institutions (as one of the

outcomes of the �rst study), we asked the following 10 questions:

(Q1) Do you agree that the adoption of microservices contributes

to technological innovation?

(Q2) Do you agree that the adoption of microservices makes the

deployment activities more �exible?

(Q3) Do you agree that the adoption of microservices leverages

continuous delivery?

(Q4) Do you agree that the adoption of microservices increases

so�ware availability?

(Q5) Do you agree that the adoption of microservices is necessary

to successfully introduce DevOps techniques in you institu-

tion?

(Q6) Do you agree that the adoption of microservices reduces the

time-to-market to introduce new so�ware features?

(Q7) Do you agree that the (lack of) criteria to decompose a sys-

tem into microservices still challenges the adoption of this

architectural style?

(Q8) Do you agree that it is still hard to convince decision makers

about the bene�ts of adopting microservices?

(Q9) Could you enumerate other bene�ts related to the adoption

of microservices?

(Q10) Could you enumerate other challenges related to the adoption

of microservices?

�estions (Q1)–(Q8) are closed questions whose available op-

tions are based on a Likert scale (Strongly Disagree (1), Disagree (2),

Neither Disagree nor Agree (3), Agree (4), Strongly Agree (5)). �es-

tions (Q9) and (Q10) are open-ended questions. We qualitatively

analyzed the answers to the open-ended questions.

We designed an on-line survey (it can be found at: h�ps://goo.
gl/dUQT6k), and asked developers from the three institutions to

answer it. Before sending the survey, we validated it internally in

order to catch wording problems, or improve the title of the ques-

tions to ease understanding. We sent the survey to 33 employees of

the three studied companies that have participated in the migration

process. During a period over two weeks, we obtained 13 answers.

Among the respondents, 12 of them so�ware developers, though

one of the respondents also works as an infrastructure manager.

We analyze the answers of the closed questions using plots,

tables, and distributions. For the open questions, we opted for a

straightforward qualitative approach: we grouped each answer into

categories; a�er the initial pass, we re�ned the categories in order

to �nd broad and more meaningful groups. We use these answers

to cross-validate the �ndings of our �rst study.

4 Results for Study 1: Observations
In this section we discuss the scenario in the Brazilian institutions

that motivated them to migrate to a microservices-based architec-

ture (Section 4.1), we elucidate the adoption strategies that the

institutions employed to leverage the microservices-based architec-

ture (Section 4.2), and we also present some initial progress that

the institutions made in order to migrate representative so�ware

systems to microservices-based architecture (Section 4.3).

4.1 Before the adoption
�is section presents the di�erent reasons that led the three in-

stitutions (TCU, MP, and CPD/UnB) to start a process to adopt

microservices as an architectural style.

4.1.1 TCU Obsession for Technical Conformance
For several years, technical conformance was one of the main archi-

tectural requirements at TCU. In this scenario, all enterprise sys-

tems should be developed considering a shared database, a shared

domain model, and a common stack of technologies, programming

languages, libraries, and tools (also using speci�c versions). In

summary, the mentioned stack was based on the Java Enterprise
Edition speci�cation, using Java Server Faces for the presentation

tier, Enterprise Java Beans for the domain tier, and ORACLE as the

underlying relational database system. However, in recent years, it

became clear that this stack was not an interesting option to solve

several classes of problems at TCU, which could be be�er addressed

reducing the coupling with the shared database and domain model

components and using di�erent development platforms, di�erent

programming languages, or even di�erent persistence layers. How-

ever, the requirements of technical conformance o�en led to an

unusual design for speci�c situations, increasing the development

costs and time to market. �ere was also an issue related to the lack

of development team motivation, since the development teams were

not free to experiment with new technologies. �erefore, reduc-
ing the coupling with a shared domain model component
and making technical innovation feasible were the principal

reasons for experimenting a microservices-based architecture at

TCU, together with the well-known possible bene�ts, such as more

independent deployment processes.

4.1.2 MP Nightmares with Builds and Deployments
�e MP is responsible for the main design decisions and devel-

opment of the Brazilian Integrated Budget Planing System (SIOP),

a monolithic enterprise Java system that supports all work�ows

related to the Brazilian Federal Annual Budget. In a �rst moment,

the design of SIOP was based on a typical Java Enterprise Edition
(JEE) application (similar to the reference architecture at TCU).

Also similar to TCU, the monolithic and rigid architecture hin-

dered the adoption of new technologies, programming languages,

and tools. �e development team claimed that even simple tasks

(such as upgrading the application server or the version of the fron-

tend components) were real nightmares, in particular because any

changes would have the potential of a�ecting the whole system.

Moreover, the deployment process of SIOP was also a challenge

itself, because it required to stop the application server to update

the version of a single Enterprise Archive component that comprises

the entire code base of SIOP (∼521KLOC).

To reduce risks and downtime of the application, the infras-

tructure team was really conservative with respect to the speci�c

moments in which a deployment might happen. Still, SIOP has a

heavyweight development process, which is a problem since several

business areas present a high demand for frequent deployments—

particularly when approaching deadlines of the federal budget

planning and execution cycle. �erefore, the main motivation for

implementing a microservices-based architecture at SIOP was to

allow the adoption of new technologies in independent parts

of the system and, consequently, to make the deployment pro-
cessmore �exible and independent, in such a way that it would

https://goo.gl/dUQT6k
https://goo.gl/dUQT6k

An Experience Report on the Adoption of Microservices SBES’18, 17 – 21 September, 2018, São Carlos, Brazil

become possible to deploy a business subset of SIOP independently

of the remaining parts of the system.

4.1.3 CPD/UnB and its Duplicated Systems
�e enterprise ecosystem at CPD/UnB involves the implementation

of di�erent academic systems using (a) di�erent architectures (from

two-tier systems to Web systems) and (b) programming languages

(such as Java, Visual Basic, and C#). �at is, architectural confor-

mance was not a signi�cant issue for CPD/UnB. However, the lack

of a rigorous approach for so�ware development led to problems

in di�erent situations. For instance, a student should be able to

register himself into a course using either a desktop or a Web based

application of the same system. Nevertheless, the business logic re-

lated to the registration process was implemented in both versions

of the system. �e maintenance costs were excessive because bug

�xes and implementation of new features have been o�en modify-

ing not only di�erent parts of a system, but also di�erent systems.

In this chaotic scenario, the adoption of microservices appeared as

a possible solution to decrease code duplication.

�e microservice adoption was perceived as a reasonable goal,

since instead of having the entire legacy system replaced with a

new major release, the development team could modernize the

codebase through the creation of small services (e.g., performing

the modernization of the systems in small increments). �is would

allow developers to migrate parts of a given system A to a set of

microservices, and then make the other systems that depend on A
to start to consume those services.

Summary of RQ1: �e reasons that motivate the institu-

tions to adopt a microservice-based architecture varied from

(1) reducing the coupling with a shared domain model compo-

nent and making technical innovation feasible, (2) decreasing

code duplication and maintenance e�orts, and (3) allowing

the adoption of new technologies in independent parts of the

system and to achieve independent deployment.

4.2 Adoption Strategies and Technical Decisions
As aforementioned, the goal at TCU was to increase both inno-

vation opportunities and the autonomy of development teams to

choose suitable programming languages and tools for solving par-

ticular problems. Without any strategic plan, the development

team started a new project using a microservices-based architec-

ture. �ough, to avoid drastic changes and reduce risks, that team

decided to maintain a Java based infrastructure. �e �rst bene�t

found with the adoption of microservices was the reduced coupling

between services and the legacy backend. A�erwards, another

development team decided to decompose a monolithic system into

microservices and thus the microservices adoption disseminated to

di�erent teams.

Together with the increasing knowledge on microservices de-

velopment, the teams enlarged the set of tools to develop microser-

vices, such that it became possible to select the best alternative for

a given situation. �e current perception is that the adoption of

microservices reduced the risks related to technical innovation. In

this context, di�erent databases, programming languages, program-

ming libraries, and tools have been explored as backend alternatives.

Similarly, the development teams already explored alternatives for

the frontend. Versions of libraries or even the development plat-

form have been managed with high �exibility, which represents a

great contrast to the previous model. �e development teams also

increased their autonomy with respect to deployment activities,

which started to occur more frequently and with an increasing

degree of automation. Well-de�ned services boundaries enabled

this bene�t, and thus the development team perceived that the

deployment of a microservice o�en occurs in an isolated manner.

�e current architecture at TCU uses a continuously updated ser-
vice central repository that is fed by speci�c jobs that collect services

metadata from each microservice. Regarding deployment, each mi-

croservice runs in the context of a speci�c (Docker) container. Each

commit in the source code repository enables a continuous deploy-

ment pipeline that builds a new container image with the new

version of a microservice, and pushes this image to an internal

registry. Regarding security, clients of a microservice must be au-

thenticated using tokens that are sent in the request headers. Each

microservice has its own credentials (user name and password),

which allows it to obtain an authentication token before consuming

another service.

Due to the problems discussed in the previous section, the de-

velopment teams at MP established a working group to propose a

new architecture based on microservices. �e �rst decision was to

investigate the adoption of well-known services and microservices

enabling technologies (such as Apache �ri� and Google Protocol

Bu�ers) complemented with proprietary tools. Another relevant

decision was to keep Java as the main backend programming lan-

guage, without using Enterprise Java Beans (EJBs), however. In-

stead, the development team proposed Duna (h�ps://github.com/
duna-project/duna-poc), a framework that provides EJB features

similar to those provided by the EJB speci�cation (e.g., transaction

management and service communication), but works independently

from the application server. Regarding the frontend technologies,

Javascript MVC-clients are being used. �e communication be-

tween the frontend and the backend is primarily carried out using

either GraphQL or REST-based calls.

A�er these �rst de�nitions, the development team implemented

a pilot project to understand the bene�ts and consequences of

adopting the proposed architecture. �e pilot project involved the

migration of a non-trivial “module” of SIOP, responsible for a spe-

ci�c process of the system, which requires an integration between

the Executive and Legislative Brazilian powers. �e promising

results of this pilot project encouraged the development team to

proceed with the migration process of other modules of SIOP.

�e current architecture at MP uses Docker and Docker compose

for services’ provisioning and discovering. �e integration between

microservices is supported through requests that come from the

user interface or using immediate messages between the backend

components, which speedups the execution of some transactions.

Similarly to the TCU architecture, the authentication is based on

tokens, though using only user credentials. �e architecture also

uses the Apache HTTP Server for dealing with loading balance

among Docker containers.

Finally, our migration case at CPD/UnB was supported by a

set of research and development initiatives, which started when

a so�ware architect from CPD/UnB registered himself in a gradu-

ate course at UnB, aiming at designing a so�ware modernization

process to the institution. A�er a systematic mapping study on

so�ware modernization [1] and a be�er understanding of the insti-

tution needs, the development teams decided to use microservices

on top of an “in a house” so�ware infrastructure. Such a decision

https://github.com/duna-project/duna-poc
https://github.com/duna-project/duna-poc

SBES’18, 17 – 21 September, 2018, São Carlos, Brazil W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, R. Bonifácio

was motivated by the lack of resources to invest either in so�ware

licenses or training to adopt an “o� the shelf ” solution and by the

perception that developing the initial set of tools and libraries would

be feasible, would favor comprehension of the whole stack, and

would allow the teams to tailor the technologies to the particular

needs of the institution.

In this scenario, the development team created ErlangMS (h�ps:
//github.com/erlangMS), a microservices-based infrastructure de-

veloped in Erlang that supports the implementation of services

using di�erent programming languages. ErlangMS addresses the

polyglot requirement of building so�ware using di�erent languages

at the institution. To evaluate the architecture, the development

team developed a relatively small pilot project (almost 5KLOC). �e

goal of this pilot project was to modernize a legacy social student
assistance system. �e success of this pilot project was also impor-

tant to convince high level decision makers to migrate part of the

existing technological infrastructure.

Although the managers and developers involved in this pilot

project considered it a success, the pilot project was not deployed

until the development team gave evidences that the architecture

was able to solve a scalability issue of the single sign-on authenti-

cation mechanism used in the entire ecosystem of the institution.

Again, in this situation, another proof-of-concept based on microser-

vices, on top of ErlangMS, was designed and the development

team demonstrated to the decision makers that the solution could

mitigate the scalability problems of the legacy infrastructure.

A�er that, the architects and development teams at CPD started

to adopt ErlangMS in the production environment (still side by side

with the legacy systems). �e current decision at CPD/UnB is to run

multiple instances of ErlangMS, each one working as a container

for a small number of microservices. Using the distribution facilities

of the Erlang Open Telecom Platform (OTP), the di�erent instances

of ErlangMS communicate to each other using Erlang messages,

which simpli�es the implementation of a number of concerns, such

as services discovery and orchestration.

Summary of RQ2: �e main technical decisions are related

to (1) implementing a pilot project to understand the adoption

strategy o micro-serivces in a given institution, (2) reusing

components of the legacy systems to implement microser-

vices and reduce risks, and (3) taking advantage of containers

to enable the deployment of microservices in di�erent envi-

ronments (e.g., test, homologation, and production).

4.3 A�er the adoption
�e TCU development team has already migrated two legacy sys-

tems to the microservices based architecture (they comprehend 6

microservices and 40KLOC). In addition, four new systems have

been implemented using microservices. Altogether, there are more

than 30 microservices running on the production environment at

TCU. However, the current decision is to not migrate any other

legacy system to the microservices based architecture, since this

process was considered time consuming and costly. �e current

understanding is that only new systems should be designed using

the microservices-based architecture.

Di�erently, only one module of SIOP has been migrated to the

microservices-based architecture, comprising 12 microservices and

almost 20KLOC. �e current understanding of the MP development

Item low neutral high

Deployment 7.69 0.00 92.31

ContinuousDelivery 7.69 0.00 92.31

Innovation 0.00 15.38 84.62

TimeToMarket 15.38 7.69 76.92

Availability 15.38 15.38 69.23

DevOpsEnabler 0.00 30.77 69.23

Table 1. Answers’ distribution for questions (Q1)–(Q6)

team is that the entire system should be migrated to the new archi-

tecture. �at is, although being a challenging task, the perceived

bene�ts justify the e�orts. New modules should be migrated in

the following months. However, it is clear that, to migrate the

whole system, it would be necessary a long term e�ort (in terms of

years)—though the high level decision makers believe that this is a

strategic decision.

Finally, the development team at CPD/UnB has developed sev-

eral microservices for dealing with the authentication, authoriza-

tion, and monitoring mechanisms of the corporate systems using

microservices (comprehending 4 services and almost 2KLOC). In

addition, more than 20 microservices (almost 15KLOC) that either

support business work�ows or share university data have also

been implemented. �is shi� promoted new development models

(such as crowdsourcing or hackathons) that were not envisioned

before. More recently, a whole legacy system was migrated to the

microservices-based architecture, and the results are promising. As

a result, the high-level decision makers started to invest in the new

platform.

5 Results for Study 2: Survey
We present the results of our survey grouping questions (Q1) – (Q6)

and (Q9), which focus on the bene�ts achieved using microservices

and questions (Q7), (Q8), and (Q10), which focus on the challenges

developers faced with the adoption of an architecture based on

microservices.

5.1 Bene�ts Related to the Adoption of Microservices
As Figure 2 and Table 1 show, almost all respondents agree that

the adoption of microservices brings bene�ts to continuous deliv-

ery, make deployment more �exible, leverage innovation, reduce

time-to-market, enable DevOps adoption, and increase so�ware

availability.

In more details, respondents consider that microservices con-

tribute most for leveraging continuous delivery and making deploy-

ment activities more �exible. Regarding these two characteristics,

53% of the respondents strongly argue in favor of microservices

and 38% argue in favor of microservices. We also found that 30% of

the respondents either disagree or neither agree nor disagree that

microservices improve so�ware reliability (against 70% that either

agree or strongly agree that microservices improve so�ware reli-

ability). �erefore, increasing so�ware reliability is not the most

perceived bene�t that result from the adoption of microservices.

In addition, 30% neither agree nor disagree that the adoption of

microservices is a necessary step for the DevOps adoption (against

53% that agree and 15% that strongly agree). A possible reason for

https://github.com/erlangMS
https://github.com/erlangMS

An Experience Report on the Adoption of Microservices SBES’18, 17 – 21 September, 2018, São Carlos, Brazil

8%

8%

0%

15%

15%

0%

92%

92%

85%

77%

69%

69%

0%

0%

15%

8%

15%

31%

TimeToMarket

DevOpsEnabler

Availability

ContinuousDelivery

Deployment

Innovation

100 50 0 50 100

Percentage

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 2. Plot with the answers’ distribution for questions (Q1)–(Q6). 1 means Strongly Disagree, 2 means Disagree, 3 means Neutral, 4

means Agree, and 5 means Strongly Agree.

this result is that both techniques (DevOps and microservices) ac-

tually complement each other. �at is, it is hard to introduces a

microservices-based architecture without increasing the automa-

tion of deployment tasks and reducing the boundaries between the

development and production teams (two assumptions related to

the DevOps approach). In this way, DevOps might be actually an

enabler approach for the adoption of microservices (instead of the

reverse), and for this reason, microservices make clear the needs

for adopting DevOps.

Also interesting, 22% either disagree or neither agree nor disagree
that the adoption of microservices reduces the time-to-market of

new so�ware features (against 23% that agree and 53% that strongly
agree). Based on the results of the previous study, this perspec-

tive might change according to the institution. We have practical

evidences that the adoption of microservices increases the produc-

tion of so�ware at CPD/UnB. �e same result might not be true

for the other institutions. Finally, 15% neither agree nor disagree
that the adoption of microservices improves the opportunities for

technical innovation (against 38% that agree and 46% that strongly
agree). Altogether, we found some evidences that the adoption of

microservices brings bene�t to all the mentioned aspects in our

survey.

Six developers answered (Q9), the optional open-ended question

asking for further perceived bene�ts of adopting microservices. �e

respondents included additional bene�ts such as team motivation,

increasing ability for working in small and parallel tasks, technology
independence, support for third party development and horizontal
scalability.

Summary of RQ3: �e bene�ts related to microservices

usage include (1) the adoption of continuous delivery, (2) the

reduced time to market, (3) the increased so�ware availability,

(4) the improvement on teams’ motivation.

5.2 Challenges Related to the Adoption of Microservices
According to the respondents, the main challenge related to the

adoption of microservices is the lack of understanding on how to

decompose an existing monolithic enterprise system into a num-

ber of microservices (Q7). Di�erently, based on the answers to

Item Low Neutral High

Lack of a Decomposition Criteria 0.00 0.00 100.00

Decision Makers Involvement 7.69 23.08 69.23

Table 2. Answers’ distribution for questions (Q7) and (Q8)

our survey, 30% of the respondents did not agree that the lack of

involvement of decision makers is a challenge to the adoption of

microservices (Q8). We summarize these results in Figure 3 and in

Table 2.

�e respondents included additional challenges as answers to

question (Q10). For instance, one of the respondents pointed out

that “the strong coupling among the components of the legacy system”

hinders the migration process from monolithic to an architecture

based on microservices. Other respondent stated that the migration

process has introduced new issues related to security “. . . and radi-
cal changes on the development process”. Another challenge relates

to the “increasing degree of automation” that is necessary to “put
everything to work”, according to one of the respondents. Besides

strengthen the challenges related to the lack of criteria (a) to de-

compose a problem into microservices and (b) to evaluate quality

properties of a microservice (such as size and cohesion), one of the

respondents also emphasized that“the use of microservices lead to an
unstable distributed environment that brings new challenges related
to distributed transactions”.

Summary of RQ4: Among the challenges, we observed that

the lack of understanding on how to decompose a monolithic

system into a service plays a role. Moreover, some respon-

dents reported the strong coupling among the components of

the legacy system and the radical changes in the development

process as some additional challenges.

6 Discussion
In this section we summarize the lessons learned from both studies

and present our perception with the adoption of a microservices-

based architecture in the three institutions.

SBES’18, 17 – 21 September, 2018, São Carlos, Brazil W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, R. Bonifácio

0%

8%

100%

69%

0%

23%DecisionMakersInvolvement

LackOfCriteria

100 50 0 50 100

Percentage

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Figure 3. Plot with the answers’ distribution for questions (Q7)–(Q8). 1 means Strongly Disagree, 2 means Disagree, 3 means Neutral, 4

means Agree, and 5 means Strongly Agree.

6.1 Lessons Learned
�e adoption of microservices at TCU brought many bene�ts, in-

cluding a lower coupling with the shared domain model and the

increased autonomy of the development teams with respect to

technical innovation [5]— a bene�t that has been previously dis-

cussed [4]. Currently, when one needs to build a new system, the

development team is free to discuss and select the set of tools and

technologies that be�er �ts their requirements. �e microservices

architecture also promoted the adoption of DevOps practices, such

as Continuous Delivery, which in turn reduced time-to-market and

improved deployment activities. Although the deploy of monolithic

systems still complies with rigid time frames (once a week), the de-

ployment of microservices might occur several times a day. Besides

those bene�ts, the current decision is to only use the microservices-

based architecture to develop new systems. �at is, no additional

migration e�ort should take place in a near future.

Continuous delivery in the production environment was consid-

ered the main bene�t of introducing microservices at MP. Using

microservices, it is possible to implement and deploy changes (such

as bug �xes or the development of new features) and then put such

a change in a production environment with a �exible schedule

and a reduced downtime of the entire system. With the adop-

tion of microservices, developers were able to deploy a module in

less than a minute (about 10 times faster, when compared to the

monolithic system). �is was not feasible before. In the current

scenario, it is possible to deploy several pre-release versions of a

microservice-based module in a single day. Since microservices

promote independent so�ware systems, the development teams

are also able to experiment with new technologies. For instance,

it is possible to change the user interface technology of a given

service, without having to propagate this kind of modi�cation to

other parts of the system. �is bene�t allowed the development

team to explore suitable technologies to the di�erent areas of SIOP.

Finally, at CPD/UnB, the main bene�t with the adoption of a

microservices-based architecture is that currently, the development

teams at CPD/UnB were able to implement and deliver small pieces

of functionalities in short periods of time and implement modern-

ization initiatives using an incremental approach. Also, they were

able to migrate parts of a system to microservices that coexist with

the other parts of a system that have not been migrated. Microser-

vices also promoted new development models (such as hackathons),

fostering external developers (e.g., students) to collaborate through

the design and development of new solutions to the institution. Al-

though the modernization of the legacy systems has not occurred

as initially planned, it is important to note that the decision to

postpone the modernization e�orts was not related to the proposed

architecture, but instead due to the increasing so�ware demand

that delays the execution of the so�ware modernization e�orts. We

summarize some relevant observations from our study in Table 3.

6.2 Our perception
Besides the bene�ts discussed above, there are several uncertainties

related to migration e�orts. For instance, it is hard to convince de-

cision makers from our studied institutions to invest on e�orts like

this. Based on our experience, it is easier to introduce microservices

when developing new systems. �e challenges to migrate to a mi-

croservices based architecture also increase because microservices

and DevOps should be introduced side-by-side, to allow develop-

ment teams to manage an increasing number of services. As a

consequence, the number of tools involved increases substantially,

raising the expectations for more skilled teams.

Finally, it is di�cult to accurately identify the boundaries of a

microservice, and thus we advocate an agile approach for design-

ing microservices. �ere is a trade-o� related to microservices

granularity. If a microservice is too small, there will be a lot of

deployable unities to manage. However, if a microservice delivers

many functionalities, the expected bene�ts might be compromised.

To be�er understand (and eventually mitigate) these problems, we

plan to explore some design recommendations (such a bounded

context [11]), and tailor them to the microservices architecture. In

the cases we did not �nd an interesting design for a microservice,

we refactor the design using transformations (such as split class and

move methods) tailored to the microservices architectural style.

6.3 Limitations
First, since we were observing our own behavior (part of the authors

of this paper are the lead architects that promoted the migration

towards microservice-based architecture), we may have missed or

oversimpli�ed some of our perceptions. To mitigate this threat,

we conducted an additional survey with other practitioners in the

same institutions that also participated, but did not employ a key

role, in the transition towards microservice-based architecture. �is

survey helped us to understand and cross-validate some of the initial

�ndings. Second, as we aforementioned, our survey was deployed to

An Experience Report on the Adoption of Microservices SBES’18, 17 – 21 September, 2018, São Carlos, Brazil

Table 3. Summary of the study

Institution Motivation Adoption strategy Bene�ts Challenges

TCU To make technical innova-

tion feasible

Ad hoc; Used well-known

tooling

Reduced risks related to

technical innovation; Con-

tinuous delivery;

Time consuming; Microser-

vices only for new systems

MP To allow the adoption of

new technologies

Pilot project; Designed their

own tooling

Continuous delivery; Re-

duced down time; Explored

new technologies

Long term e�ort

CPD/UnB To decrease code duplica-

tion; Low budget to invest

on so�ware licenses

Pilot project in coopera-

tion with an University; De-

signed their own tooling

Reduced time-to-market;

crowdsourcing and

hackathons

Hard to convince decision

makers

our colleagues in the studied institutions. Although we made them

comfortable to decide whether or not to answer the survey, some of

them might feel obligated to do so. As mitigation, our survey was

designed to favor anonymity in a way that we could not trace back

the answer and map to the respondent. Moreover, we decided not

to share the survey with other practitioners in other institutions in

order to limit our results to the studied institution and the context

that motivate them to migrate to microservice-based architecture.

As consequence, this study reports the perceptions obtained in

three governmental institutions in Brazil. It does not cover other

institutions either in Brazil or abroad, neither the perceptions from

so�ware companies. It is important to highlight that governmental

institutions in Brazil are intrinsically di�erent than, for instance,

so�ware companies or tech startups, in particular due to the lack of

freedom that rules the institution, which re�ects in the conservative

technical decision adopted by them. Finally, although we did not

focus in any so�ware stack in order to leverage microservice-based

architecture, our technical decisions were grounded by the team

expertise, and, therefore, might not generalize to other so�ware

teams facing similar issues. We welcome replications of our study.

7 Related Work
We found three recent literature reviews on microservices architec-

ture. �e �rst work of Alshuqayran et al. [3] reports the common

bene�ts and challenges of this architectural style, based on the

analysis of 33 primary studies. �e second of Di Francesco and

colleagues [8] presents the analysis of 71 papers reporting research

trends, research focus, and the potential for industrial adoption

of existing research results on microservices. Finally, the work of

Vural et al. [21] reviews 37 research works to investigate the type of

research, the motivations behind the current research on microser-

vices, and the emerging standards on microservices solutions.

According to Alshuqayran et al., the commonly agreed bene�ts

on this style include (a) an increasing adoption of agility prac-

tices and developer productivity; (b) an increasing so�ware re-

silience, scalability, reliability, maintainability, and separation of

concerns; and (c) a reduced e�orts and complexity for so�ware

deployment [3]. According to the authors, the main challenges are

related to communication / integration, service discovery, perfor-

mance, fault tolerance, security, tracing and logging, application

performance monitoring, and deployment operations. �e study

calls a�ention to the emerging nature of the theme due to the lack

of experience reports and opinion papers in literature.

In the work of Di Francesco and colleagues [8], the authors re-

port that “Solution Proposal” is the prevalent research category on

microservices. According to the authors, this might indicates that

the microservice architectural style is still in its infancy. �e study

indicates that the target problems—complexity, low �exibility, re-

sources management, and service composition- are consequences of

the existing trade-o�s with the microservices adoption. Although

microservices bring the bene�ts of high �exibility, the inherent

complexity to manage a high number of distributed services is still

a challenge. �e study also suggest that there is a gap between the

research on microservices and the needs of the industry, mainly

because the current research e�orts mostly focus on proposing

solutions to particular needs. Similarly to the previous mentioned

work, Vural et al. state that “Solution Proposal” is the most widely

research category explored on microservices [21], followed by vali-

dation research and evaluation research. �e paper also presents

REST as an important emerging standard and Docker as the most

frequent used tool on microservices studies.

�ere is a number of papers addressing the question of decom-

posing monolithic applications into microservices, which indicates

that this is an issue related to microservices architecture adop-

tion. �e decomposition strategies vary. For instance, Ahmadvand

et al. present one approach to identify microservices candidates

based on requirements analysis [2], whereas Furda et al. present a

strategy that, starting from explanations about three speci�c chal-

lenges in decomposition task (multitenance, statefulness and data

consistency), point out solutions to them using well known SOA

pa�erns. Other studies explore code clusterization as a possible

strategy to identify microservices candidates from a monolithic

legacy system [10, 16]. In fact, decomposing existing monolithic

applications into microservices is a challenge (as we reported in

this paper). Nevertheless, our experience reveals that decomposing

a new system using microservices is also a challenge, and we could

not �nd substantial related work on this.

Other research works deal speci�cally with the relation between

microservices and DevOps. For instance, Balalaie et al. [4] presents

an experience report about the adoption of microservices archi-

tecture. According to the authors, the adoption of microservices

enables the use of DevOps related practices, including continu-

ous integration and deployment pipelines, continuous monitor-

ing and vertical division of project members into cross-functional

teams. Another close related study is presented by Taibi and col-

leagues [19]. �e authors conducted a survey, interviewing 21 prac-

titioners, who adopted a microservices based architectural style, to

SBES’18, 17 – 21 September, 2018, São Carlos, Brazil W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, R. Bonifácio

elicit the current motivation and speci�c issues in their adoption.

According to the survey, maintenance was always reported and

rated as very important by all the participants. Scalability, dele-

gation of responsibilities, and the easy support for DevOps also

frequently drive adoption, while the main issues are related to the

process to (a) decompose a monolithic system, (b) migrate and split

data in legacy databases, and (c) integrate di�erent services.

8 Conclusions
In this paper we report a two-years experience introducing micro-

services in three Brazilian Government Institutions (TCU, MP, and

CPD/UnB). Microservices is an emerging technology that advocates

the decomposition of a so�ware into a “suite of small services, each
running in its own process and communicating with lightweight mech-
anisms, o�en an HTTP resource API” [20]. Independent deployment

and reduced downtime are two expected bene�ts with the adoption

of microservices. However, these bene�ts have been previously

discussed in the context of high-tech companies, and here we go

beyond this recurrent perspective, and present that the adoption

of a microservices-based architecture, even in rigid, government

institutions, brings additional bene�ts with respect to

Innovation: the adoption of microservices allowed the introduc-

tion of (a) programming languages and tools that best �t the needs

of particular problems and (b) new development models (such as

crowdsourcing and hackathons). We observed this bene�t in the

three institutions.

Time-to-market: the adoption of microservices reduced the time-

to-market to introduce new features into existing systems and to

develop entire applications. We observed this bene�t at TCU and

CPD/UnB.

Motivation of development teams: Before adopting microser-

vices, the enterprise systems of the three institutions have been

developed using out of date technologies, which compromise the

development team motivation. �e adoption of microservices at-

tenuate this problem in the three institutions.

Nevertheless, it is di�cult to break a monolithic system into mi-

croservices, mostly because there is a lack of guidelines with more

precise descriptions about the expected granularity of a microser-

vice. In addition, breaking a monolithic system into microservices

demands the introduction of new practices and tools for manag-

ing an increasing number of deployable components. �is might

lead to a technological disruptor. Finally, MP and CPD/UnB have

decided to continue the modernization e�ort. Di�erently, a�er the

migration of two legacy systems, TCU have decided to only use

microservices in the development of new systems.

Acknowledgments
We thank the 13 participants in our survey and the reviewers for

their insightful comments. �is work is partially supported by

CNPq (406308/2016-0).

References
[1] Everton Agilar, Rodrigo Bonifácio, and Edna Canedo. 2016. A Systematic Map-

ping Study on Legacy System Modernization. In SEKE. KSI Research Inc. and

Knowledge Systems Institute Graduate School, 345–350.

[2] Mohsen Ahmadvand and Amjad Ibrahim. 2016. Requirements reconciliation for

scalable and secure microservice (de) composition. In Requirements Engineering
Conference Workshops (REW), IEEE International. IEEE, 68–73.

[3] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic Mapping

Study in Microservice Architecture. In SOCA. IEEE Computer Society, 44–51.

[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi. 2016. Microservices Architecture

Enables DevOps: Migration to a Cloud-Native Architecture. IEEE So�ware 33, 3

(May 2016), 42–52. DOI:h�p://dx.doi.org/10.1109/MS.2016.64
[5] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A So�ware Architect’s

Perspective (1st ed.). Addison-Wesley Professional.

[6] Keith H. Benne� and Václav T. Rajlich. 2000. So�ware Maintenance and Evo-

lution: A Roadmap. In Proceedings of the Conference on �e Future of So�ware
Engineering (ICSE ’00). 73–87.

[7] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. As-

sessing the bus factor of Git repositories. In 22nd IEEE International Conference
on So�ware Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015. 499–503.

[8] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. 2017. Research on

architecting microservices: Trends, focus, and potential for industrial adoption.

In So�ware Architecture (ICSA), International Conference on. IEEE, 21–30.

[9] Robert M Emerson, Rachel I Fretz, and Linda L Shaw. 2001. Participant observa-

tion and �eldnotes. Handbook of ethnography (2001), 352–368.

[10] Daniel Escobar, Diana Cárdenas, Rolando Amarillo, Eddie Castro, Kelly Garcés,

Carlos Parra, and Rubby Casallas. 2016. Towards the understanding and evolution

of monolithic applications as microservices. In Computing Conference (CLEI),
2016 XLII Latin American. IEEE, 1–11.

[11] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
So�ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[12] Jez Humble. 2018. Continuous Delivery Sounds Great, but Will It Work Here?

Commun. ACM 61, 4 (March 2018), 34–39. DOI:h�p://dx.doi.org/10.1145/3173553
[13] Andrew J. Ko. 2017. A �ree-year Participant Observation of So�ware Startup

So�ware Evolution. In Proceedings of the 39th International Conference on So�ware
Engineering: So�ware Engineering in Practice Track (ICSE-SEIP ’17). 3–12.

[14] Welder Luz, Gustavo Pinto, and Rodrigo Bonifácio. Building a Collaborative

Culture: A Grounded �eory of Well Succeeded DevOps Adoption in Practice. In

Proceedings of the 12th ACM/IEEE International Symposium on Empirical So�ware
Engineering and Measurement, ESEM 2018.

[15] Robert Cecil Martin. 2003. Agile So�ware Development: Principles, Pa�erns, and
Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[16] Genc Mazlami, Jürgen Cito, and Philipp Leitner. 2017. Extraction of Microservices

from Monolithic So�ware Architectures. In Web Services (ICWS), 2017 IEEE
International Conference on. IEEE, 524–531.

[17] Ronnie E. S. Santos, Fabio Q. B. da Silva, Maria Teresa Baldassarre, and Cleyton

V. C. de Magalhães. 2017. Bene�ts and limitations of project-to-project job

rotation in so�ware organizations: A synthesis of evidence. Information &
So�ware Technology 89 (2017), 78–96.

[18] Chris Stevenson and Andy Pols. 2004. An Agile Approach to a Legacy System. In

Extreme Programming and Agile Processes in So�ware Engineering, Ju�a Eckstein

and Hubert Baumeister (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

123–129.

[19] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2017. Processes, Motiva-

tions, and Issues for Migrating to Microservices Architectures: An Empirical

Investigation. IEEE Cloud Computing 4, 5 (2017), 22–32.

[20] Johannes �ones. 2015. Microservices. IEEE So�ware 32, 1 (2015), 116.

[21] Hulya Vural, Murat Koyuncu, and Sinem Guney. 2017. A Systematic Literature

Review on Microservices. In International Conference on Computational Science
and Its Applications. Springer, 203–217.

http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1145/3173553

	Abstract
	1 Introduction
	2 Background
	2.1 Microservices-based architecture
	2.2 Studied Institutions

	3 Method
	3.1 Research Questions
	3.2 Study 1: A Self-Observation
	3.3 Study 2: Survey with Developers

	4 Results for Study 1: Observations
	4.1 Before the adoption
	4.2 Adoption Strategies and Technical Decisions
	4.3 After the adoption

	5 Results for Study 2: Survey
	5.1 Benefits Related to the Adoption of Microservices
	5.2 Challenges Related to the Adoption of Microservices

	6 Discussion
	6.1 Lessons Learned
	6.2 Our perception
	6.3 Limitations

	7 Related Work
	8 Conclusions
	References

