
On The Implications of Language Constructs for Concurrent
Execution in the Energy Efficiency of Multicore Applications

The Problem Some Results

The Conclusions

The Study

The performance of the existing constructs for concurrent
execution is reasonably well-understood. But, little is known
about the energy-efficiency of these techniques.

 “Race to idle”: Is a
common belief that faster

applications will also
consume

less energy.

Benchmark
Apps

4 Variants
(3 conc. + 1 seq.)

Number. of
Threads

Intel(R) Xeon(R), 2.13 GHz, 4 cores/8
threads 16Gb of memory

Linux 64-bit, kernel 3.0.0.-31-server.

3 JVMs*

● Some factors create variations, but some others do not.
● Do

● Nature of the problem
●Concurrent programming construct

●Do not
● JVM implementation
● CPU clock frequency

● We also found out that, for concurrent software, faster
does not *always* mean greener

Varying Concurrent Construct

Varying number of Threads: N-Queens

Varying JVM providers: LargestImage

Gustavo Pinto, Fernando Castor - {ghlp, castor}@cin.ufpe.br

4

But... it is not
necessarily true!

●Factors analyzed:

● Internal factors
● Concurrent constructs
● Number of threads
● Resource usage

● External factors
● Clock frequency
● JVM providers

2 Clock
Frequencies

Different concurrent constructs could produce unexpected
results.

Improvements in performance do not necessarily mean
less energy consumed.

Different JVM could increase in more than 10% of the
energy consumed!

**
*

The Benchmarks
● N-Queens: CPU-bound
● Mandelbrot: CPU-bound

● LargestImage: IO-bound
● Knucleotide: 23% doing IO

Future work
●To conduct a broader-scoped study.

●The results of this new study will provide input for
us to derive a catalog energy code smell for
concurrent software.

●Then we plan to proceed with the design of
refactoring catalog that will enable application
programmer to safely restructure their applications
to use less energy

This work is partially supported by National Institute of Science and
Technology for Software Engineering (INES), by CNPq (grant

573964/2008-4) and FACEPE (grant APQ- 1037-1.03/08).
Gustavo is supported by CAPES.

	Slide 1

