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The Problem Some Results

The Conclusions

The Study

The performance of the existing constructs for concurrent 
execution is reasonably well-understood. But, little is known 
about the energy-efficiency of these techniques.

 “Race to idle”: Is a 
common belief that faster 

applications will also 
consume 

less energy.

Benchmark 
Apps

4  Variants
(3 conc. + 1 seq.)

Number. of 
Threads

Intel(R) Xeon(R), 2.13 GHz, 4 cores/8 
threads  16Gb of memory

Linux 64-bit, kernel 3.0.0.-31-server. 

3 JVMs*

● Some factors create variations, but some others do not.
● Do

● Nature of the problem
●Concurrent programming construct

●Do not
● JVM implementation
● CPU clock frequency

● We also found out that, for concurrent software, faster 
does not *always* mean greener

Varying Concurrent Construct

Varying number of Threads: N-Queens

Varying JVM providers: LargestImage
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But... it is not 
necessarily true!

●Factors analyzed:

● Internal factors
● Concurrent constructs
● Number of threads
● Resource usage

● External factors
● Clock frequency
● JVM providers

2 Clock 
Frequencies

Different concurrent constructs could produce unexpected 
results.

Improvements in performance do not necessarily mean 
less energy consumed.

Different JVM could increase in more than 10% of the 
energy consumed!

**
*

The Benchmarks
● N-Queens: CPU-bound
● Mandelbrot: CPU-bound

● LargestImage: IO-bound
● Knucleotide: 23% doing IO

Future work
●To conduct a broader-scoped study.

●The results of this new study will provide input for 
us to derive a catalog energy code smell for 
concurrent software. 

●Then we plan to proceed with the design of 
refactoring catalog that will enable application 
programmer to safely restructure their applications 
to use less energy
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