On The Implications of Language Constructs for Concurrent
Execution in the Energy Efficiency of Multicore Applications

Gustavo Pinto

Informatics Center, Federal University of Pernambuco
Recife, PE, Brazil

ghlpQ@cin.ufpe.br

Abstract

Our study analyzed the performance and energy consumption of
multicore applications, using a number of techniques to manage
concurrent execution. We concluded that language constructs for
concurrent execution can impact energy consumption. Nonetheless,
the tradeoff between performance and energy consumption in mul-
ticore applications is not as obvious as it seems.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming, Parallel programming

Keywords Energy-Efficiency, Language Constructs, Concurrent
Execution

1. Introduction

Measuring the energy consumption of an application and under-
standing where the energy usage lies provides new opportunities
for energy savings. In order to understand the complexities of this
approach, we specifically look at multithreaded applications. The
performance of the existing constructs for concurrent execution is
reasonably well-understood [3, 5]. Furthermore, since parallel pro-
gramming enables programmers to run their applications faster, a
common belief is that this application will also consume less en-
ergy [2]. We call this as the “Race to idle” philosophy. In sum-
mary: faster programs will theoretically consume less energy be-
cause they will have the machine idle fast.

This paper presents an empirical study consisting of the eval-
uation of the performance and energy consumption of four appli-
cations that use three concurrent constructs plus a sequential im-
plementation with the goal of demonstrating that is hard to trace
tradeoffs between energy-efficiency and performance. By an evalu-
ation of these applications in multiple environments, we show how
basic parameters, such as clock frequency, threading options, and
different VMs can impact energy consumption. Our study high-
lights the non-obvious and context-dependent nature of tradeoffs
between performance and energy consumption.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLASH 13, October 26-31, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.

http://dx.doi.org/10.1145/2508075.2514880

Fernando Castor

Informatics Center, Federal University of Pernambuco
Recife, PE, Brazil

castor@cin.ufpe.br

2. Study Setting

To achieve the goal of this study, we ran a set of benchmark applica-
tions from different domains in a number of different configurations
while varying a group of attributes. We can divide these attributes
in two groups: internal (programming language construct, number
of threads in use and resource usage - CPU and/or 10) and exter-
nal (the clock frequency and the JVM implementation). We then
provide a set of variant implementations for each benchmark using
four concurrent constructs, plus a sequential implementation'.

In this experiment, we used commodity hardware: an Intel(R)
Xeon(R), 2.13 GHz, 4 cores/8 threads and with 16Gb of mem-
ory, running Linux 64-bit, kernel 3.0.0.-31-server. These experi-
ments were run using three JVM: i) OpenJDK version 1.7.0-09, ii)
HotSpot JDK version 1.7, and iii) JRockit version 1.6. When the
experiments were performed using JRockit, we provided an exter-
nal jar file containing the ForkJoin implementation.

Our experiments consisted of running these four applications
in each of the three JVM implementations, scaling the CPU fre-
quency, and limiting the number of threads in use. We ran each ex-
periment twelve times for each workload, while measuring the sys-
tem using the powertop utility>. We discarded the executions with
the lowest and the highest to reduce bias caused by outliers. There-
fore, we have two main metrics that evaluate the experiments: the
energy consumed (in Joules) and the execution time (in seconds).

3. Study Results

Table 1 shows the overall view of our experimental results. The
column named “Energy Consumption (J)” organizes the results of
the 10 executions. The value contained in each cell represents the
median of the 10 executions, where each sample represents the total
of energy consumed in this given execution. We use boldface to
highlight the best result for the given benchmark application. The
column “Time (s)”” works similarly.

As Table 1 shows, we can notice that the results of the concur-
rent constructs can have significant differences. For instance, the
Thread results are always more inefficient in terms of both con-
sumption and performance, when compared to Executors. Thus,
since the usage of Thread and the Executors is very similar, with
a little effort, a programmer could use Executors. Table 1 also
shows that the same technique can have different impact on the en-
ergy consumed. If we take into consideration the ForkJoin variant,
we have, for the N-Queens and Knucleotide benchmark applica-
tions, a highly efficient trend for both performance and energy. On
the other hand, considering the Largestlmage application, we no-
tice that the same ForkJoin variant consumed more energy than

! The implementation details are available at http://bit.ly/parallel-construct
2 https://01.org/powertop/

| Energy C ption (J)

| N-Queens | Largestimage | Mandelbrot [Knucleotide |
Sequential 732.8 679.8 1978.1 5395.5
Thread 1023.7 766 1290.8 4808.2
Executors 984.2 633.5 1287.5 3281.2
Fork/Join 753.1 749.3 1292.4 2993.4

Time (s)

| N-Queens | Largestimage | Mandelbrot [Knucleotide |
Sequential 85 78 71 106
Thread 44 42 41 68
Executors 38 31 41 62
Fork/Join 27 54 35 55

Table 1. The comparision between the language constructs in
terms of energy consumption and time. The obtained values for
Energy consumption and time are the medians of 10 executions.

every other variant except for the one using threads. Nonetheless,
Largestlmage is a benchmark application that made heavy use of
IO operations, and it is well know that ForkJoin is not adequate
for this kind of computation. This fact is a possible reason for the
poor energy consumption.

Moreover, it is interesting to discuss about the Sequential
variant of the N-Queens benchmark application, which presented
the best energy consumption result, in spite of presenting the worst
performance. This benchmark’s result can vary according to the
input data (in case, the NxN size of the matrix). In this experiments,
we realised that, for a small matrix, the overhead caused by the
thread creation led to an increase in energy consumption. But,
for example, if we doubled the matrix size, the ForkJoin variant
becomes the most energy efficient as well.

Furthermore, we analyzed how the benchmark applications
scale with respect to the number of threads. Both the Mandelbrot
and Knucleotide benchmark applications scale well. This means
that: the more cores available, the faster the applications run, and
more energy is saved. Nonetheless, for the other ones, it is not true.
For instance, in the Largestimage benchmark, the more cores we
have, more inefficient the ForkJoin variant is, in terms of both
performance and energy. In summary, we collected a total of 128
samples (4 benchmarks x 4 variants x 4 nr. of threads x 2 clock
frequencies), and for 36 of those, the variation which achieve the
best performance were not the same that consumes less energy.

We then repeated the experiments varying the CPU frequency
from 1.2 GHz to 2.13 GHz. We notice that even after reducing
the clock frequencies, the results seems to be fairly similar to
the latter one, in terms of the better technique remains the better.
However, for the Largestimage benchmark, we found out that the
lowest frequency consumes the same amount of energy as a middle
clock frequency. It is interesting and acceptable, since it is an
application that does not use a huge amount of CPU. Thus, for
10-bound applications, a low cpu frequency could reduce energy
usage, without sacrificing performance.

Finally, we have also analyzed whether different JVM had dif-
ferent impacts on performance and energy consumption. We ob-
served that, in general, results are very similar, specially for Open-
JDK and HotSpot. It does not surprise us, since the HotSpot is the
primary reference implementation of JVM, and OpenJDK is heav-
ily inspired by them. On the other side, the JRockit JVM presents
the worst case scenario, for all variants. For example, taking into
consideration the Thread variant, the results increased in more than
10%. For the other benchmark applications, the JRockit also ex-
hibited the worst results among the JVMs. Although the different
JVMs did affect execution time and energy consumption, similarly
to different clock frequencies, they did not significantly change the
behavior of the variants, e.g. the fastest and slowest variants in one
JVM were the fastest and lowest variants for all of them.

4. Related Work

To the best of our knowledge, only two studies have dealt with the
topic of understanding the impact of concurrent constructs on the
energy efficiency of applications [1, 4]. Gautham et al. [1] explore
the following synchronization techniques to find an ideal solution
for synchronization intensive workloads: i) spin lock ii) mutexes
iii) software transactional memory. They show that Software Trans-
actional Memory (STM) systems can perform better than locks for
workloads where a significant portion of the execution time is spent
in the critical sections. Trefethen [4] studies the behaviour of the
NAS Benchmark suite for its energy and runtime performance. The
benchmark suite considered includes I/O and compute-intensive
applications. The authors concluded that there is a clear interac-
tion between execution time and energy but this is not a simple
relationship and can be affected by the computer environment and
algorithmic approach used in the application. Nonetheless, none of
these papers compare the energy-efficiency between techniques to
manage concurrent execution.

5. Conclusion

This paper presented an empirical study targeting four bench-
mark applications using a number of concurrent programming
constructs with the goal of finding interesting tradeoffs between
energy-efficiency and performance. Our approach indicates that
it is possible to switch from one technique to another in order to
consume less energy. Nonetheless, we also conclude that it is very
hard to identify which technique is the better for a given scenario.
Moreover, our experiments show that factors such as the nature of
the problem to be solved, the technique used to manage concurrent
execution, the CPU clock frequency, and the JVM implementation
can create variations. These results lead us to conclude that it is
very difficult to generalize a relationship between performance and
energy consumption for concurrent systems. For these systems,
winning the race to idle does not imply more energy efficiency.
In the future, we intent to address this problem by conducting a
broader-scoped study. The results of this new study will provide
input for us to derive a catalog of energy code smell for concurrent
software. Then we plan to proceed with the design of refactoring
catalog that will enable application programmer to safely restruc-
ture their applications to use less energy.

6. Acknowledgments

Gustavo is supported by CAPES and Fernando is supported by
CNPq (306619/2011- 3), FACEPE (APQ-1367-1.03/12), and by
INES (CNPq 573964/2008-4 and FACEPE APQ-1037- 1.03/08).

References

[1] A. Gautham, K. Korgaonkar, P. Slpsk, S. Balachandran, and K. Veezhi-
nathan. The implications of shared data synchronization techniques
on multi-core energy efficiency. In Proceedings of the, HotPower’12,
Berkeley, CA, USA, 2012.

[2] 1. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Winter. Towards
applying reengineering services to energy-efficient applications. In
CSMR, pages 353-358, 2012.

[3] L. A. Smith, J. M. Bull, and J. Obdrzdlek. A parallel java grande

benchmark suite. In Proceedings of the 2001 ACM/IEEE conference

on Supercomputing, Supercomputing *01, pages 8-8, New York, NY,

USA, 2001. ACM.

A. Trefethen and J. Thiyagalingam. Energy-aware software: Chal-

lenges, opportunities and strategies. Journal of Computational Science,

1(0):—, 2013. ISSN 1877-7503. .

[5] W. Zhu, J. del Cuvillo, and G. R. Gao. Performance characteristics of

openmp language constructs on a many-core-on-a-chip architecture. In
IWOMP, pages 230-241, 2006.

[4

=

