
Are Java Programmers Transitioning to Multicore?
A Large Scale Study of Java FLOSS

Weslley Torres Gustavo Pinto Benito Fernandes
João Paulo Oliveira Filipe Ximenes Fernando Castor
Informatics Center, Federal University of Pernambuco, Recife, Brazil

{wst, ghlp, jbfan, jpso, fax, castor}@cin.ufpe.br

Abstract
We would like to know if Java developers are retrofitting applica-
tions to become concurrent and, most importantly, to get a better
performance on multicore machines. Also, we would like to know
what concurrent programming constructs they currently use. Evi-
dence of how programmers write concurrent programs can aid oth-
ers programmers to be more efficient when using the available con-
structs. Moreover, it can assist researchers in devising new mecha-
nisms and improving existing ones. For this purpose, we have con-
ducted a study targeting a large-scale Java open source repository,
SourceForge. We have analyzed a number of FLOSS projects along
two dimensions: spatial and temporal. For the first one, we have
studied the latest versions of more than 2000 projects. Our goal is
to understand which constructs developers of concurrent systems
employ and how frequently they use them. For the temporal di-
mensions we took a closer look at various versions of six projects
and analyzed how the use of concurrency constructs has evolved
along time. In addition, we try to establish whether uses of concur-
rency control constructs aimed to leverage multicore processors or
not. We downloaded more than two thousand Java projects includ-
ing their various versions, besides individual analys about six well
known open-sources projects.

Keywords Java, Open-Source, Concurrent, Parallel, Multicore

1. Introduction
In order to get real performance advantages of multicore machines,
programmers need to build parallel applications [24]. However,
building this kind of application is a demanding and error-prone
task [9, 17, 24]. Many programming languages, e.g., Go, Scala,
Java, Erlang, C#, and Lua, implement their own constructs for
concurrent/parallel programming.

Considering the discrepancies among the many existing ap-
proaches for concurrent programming, we would like to know how
programmers use them, in terms of frequency of use, the system
evolution over time, and if programs are becoming more concur-
rent along their versions. More generally, we would like to know
what programming constructs developers actually use to build con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TMC ’11 October 2011, Portland, USA
Copyright c© 2011 ACM [to be supplied]. . . $10.00
Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Transitioning to MultiCore (TMC) at the ACM Systems, Program-
ming, Languages and Applications: Software for Humanity (SPLASH) Conference,
October, 2011. Portland, OR, USA.

current systems, especially if programmers are aware about evolu-
tion/transition of singlecore to muilt-core.

On the one hand, knowing how commonly programmers use
these constructs may help researchers to design new mechanisms
or improve existing ones, based on development practice. In addi-
tion, it can point out the real needs of developers, not only in terms
of new or improved mechanisms, but in terms of refactoring and
reengineering tools and techniques that can help them to incorpo-
rate these mechanisms into existing systems.

On the other hand, developer awareness about these usage pat-
terns might lead to more efficient use of existing abstractions. Fi-
nally, for both researchers and developers, it is important to under-
stand trends in software engineering and only a empirical study can
gather that kind of information.

In this work we present an empirical study targeting a large-
scale Java open source repository. We try to answer two research
questions by examining a large body of real-world experimental
data. Our main goal is to answer these research questions:

• RQ1 - How often are the Java concurrency constructs employed
in real applications?

• RQ2 - Are programmers aware about the transition from sin-
glecore to multicore?

We obtained the source code of 2283 Java projects from Source-
Forge and peform an automatic analysis, collecting more than 50
different metrics related to concurrency from these projects, six
others well known open source projects (Apache Tomcat, Lucene,
Cassandra, Subversion, Hibernate and jMonkeyEngine) were ana-
lyzed by manual checking. These projects comprise approximately
560 million lines of source code spread throughout more than
15,000 versions. We have chosen the Java language because it is
a widely used object-oriented programming language. Moreover, it
includes support for multithreading with both low-level and high-
level mechanisms.

Mining data from the SourceForge repository poses several
challenges. Some of them are inherent to the process of obtaining
reliable data. These derive from mainly two factors: scale and lack
of a standard organization for source code repositories. Others
pertain to actually transforming the data into useful information.
Grechanik et al. [11] discuss a few challenges that make it difficult
to obtain evidence from source code: for example, getting the
source code of all software versions is difficult because there is no
naming pattern to define if a compressed file contains source code,
binary code or something else. Furthermore, it is difficult to verify
that an error has occurred during measurement, due to the number
of projects and project versions. We addressed these challenges
by creating an infrastructure for obtaining and processing large
code bases, specifically targeting SourceForge. Overall, we found

Figure 1. High-level view to our infraestrucutre.

out that most of the medium to large-sized projects employ some
form of concurrency control. Most of them use mainly mutual
exclusion in the form of synchronized blocks and methods. A
surprisingly large amount (more than 25% of all the projects, 50%
of the concurrent ones) employ monitor-based synchronization,
although most of them use it sparsely. Finally, we discovered that
developers are wasting many opportunities to use these higher
level/more efficiente abstractions.

2. Study Setting
This section describes the configuration of our study: our basic
assumptions, our mining infrastructure, the metrics suite that we
employ, and our research questions.

2.1 Context
We analyzed mature and stable Java projects obtained from Source-
Forge. Due to the release date of Java 1.5 in late 2004, the first
official release of the java.util.concurrent (j.u.c.) library, we
only obtained projects whose latest version update was at least in
2005. We consider a program as concurrent if it extends Thread
class or Runnable interface or implements Runnable interface at
least once or employs any concurrency control mechanism, such
as synchronized blocks or synchronized methods. Beyond projects
from SourceForge we also analyzed some Apache projects, because
they are known for their high quality implementations, which con-
trast with the heterogeneity of SourceForge.

To crawl projects in the repository we had to define some heuris-
tics, for example, to get source code, the crawler searches for files
whose names include keywords like ‘source’ or ‘src’. At the end,
we obtained 2097 main projects out of 9101 mature and stable Java
projects. The project classification as mature or stable is defined
by the project maintainers at SourceForge. We disregarded many
projects to improve the reliability of our findings. Even then, we
could analyze more than half a billion lines of code.

2.2 Infrastructure
Our infrastructure consists of three major crawlers, and one shell
script (Figure 1). Initially, (a) the first crawler populates the project
repository with Java Projects from Sorceforge, including their var-
ious versions. In (b) the shell script extracts all compressed files
into our local repository. In (c) the crawler parsers the source code,
collects metrics, and stores the results in the metrics repository. In
(d) the crawler generates input, as CSV files, to be analyzed by R
[14].

The crawlers are an extention of Crawler4j 1, an open source
web crawler application, multithreaded and written in Java. We also
implemented additional scripts to order project versions based on
dated available at SourceForge and to check if the target project is
ready to be analyzed, fixing its structure when necessary.

To collect concurrency metrics we used the JavaCompiler
class2 to parse the source code and build parse trees. The trees

1 http://code.google.com/p/crawler4j/
2 http://download.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html

are traversed and the metrics are extracted and stored in text files.
Metrics collected consist of counting numbers of lines, imports,
class instantiations of the Thread class, method invocations, class
extensions of the Thread class and the Runnable interface, im-
plementations of the Runnable interface, and uses of some Java
keywords such as synchronized and volatile. Some collected met-
rics are: numbers of extends Thread, implements Runnable,
import j.u.c, sync methods, sync blocks, Hashtable, HashMap,
ConcurrentHashMap, AtomicInteger, Lines of Code. The full
list is available on the website [23].

3. Research Questions
3.1 How Often are the Java Concurrency Constructs

Employed in Real Applications?
One of the goals of our study is to understand how concurrent
code has evolved over time, in terms of the usage of concurrency
constructs. Therefore, in an attempt to capture trends in terms of
concurrent programming construct usage, we need to count basic
statistics about the code, as mentioned in the previous section.
These tasks are done by separating projects in groups sorting by
year, or metrics like LOC, as we will show later.

3.2 Are Programmers Aware of Evolution/Transition from
Singlecore to Multicore?

This is a very interesting question because, besides verifying the
general results for RQ1 with the source code, we can also map
and identify some characteristics about how programmers usually
evolve code that requires concurrent skills, and if they are really
moving to multicore.

On the other hand, these questions are extremely complex and
wide, and this paper does not cover it entirely. Moreover, to begin
this study we need to analyze each project individually and manu-
ally, looking for individual transformations of use, or disuse, of the
most common contructs related to concurrency. This task is costly.
Therefore, we studied six open-source projects that have one or
more version from 2005 until today. These transformations were
analyzed along three or four versions of each project.

To achieve this goal, we manually analyzed about three or
four versions of six open-source Java projects: Tomcat 3, jMon-
keyEngine 4, Lucene 5, Blackports 6, Mobicents 7 and Fura 8. Some
of this projects are very large, so we guided our analysis by search-
ing in the source code for concurrency keywords and comparing
the source code of differents versions.

Among this set of projects, Tomcat, jMonkeyEngine and Fura
were individually selected because they are successful open-source
projects. The reason we did this was to analyze projects that are
mature and widely used, for both community and commercially.
For the remaining three, we applied a random algorithm to choose
the last three projects that we downloaded from source forge.

Tomcat: Apache Tomcat is a web container, or application
server, enabling Java code to run in cooperation with a web
server. Tomcat is the official Reference Implementation for the
Java Servlet and the JavaServer Pages (JSP) specifications. Note
that Tomcat represents a group of projects, here we consider only
the ‘Catalina’ subproject, which implements the actual servlet con-
tainer.

3 http://tomcat.apache.org
4 http://www.jmonkeyengine.com
5 http://lucene.apache.org
6 http://backport-jsr166.sourceforge.net/
7 http://sourceforge.net/projects/mobicents
8 http://fura.sourceforge.net

jMonkeyEngine: jMonkeyEngine (JME) is a game engine,
made Especially for game developers who want to create 3D games
with modern technology standards. The software is programmed in
Java entirely, intended for wide accessibility and quick deployment.

Lucene: Lucene is a high-performance, full-featured text search
engine library. It is a technology suitable for nearly any application
that requires full-text search, especially cross-platform. It is sup-
ported by the Apache Software Foundation and is released under
the Apache Software License.

Backports: The goal of this project is to provide a concurrency
library that works with uncompromised performance on all Java
platforms currently in use, allowing development of fully portable
concurrent applications. More precisely, the target scope is Java 1.3
and above, and some limited support is offered for Java 1.2.

Mobicents: Mobicents is the leading Open Source VoIP Plat-
form. It is the First and Only Open Source Certified implementation
of JSLEE 1.1 (JSR 240), and SIP Servlets 1.1 (JSR 289). Mobicents
also includes a powerful and extensible Media Server.

Fura: Fura is a self-contained grid middleware that allows the
grid deployment and distribution of applications on heterogeneous
computational resources. Fura’s component based plug-in architec-
ture allows grid services to be extended or replaced, and new ser-
vices can be developed reusing existing components.

4. Study Results
This section presents the results of the measurement process. The
data has been collected based on the set of defined metrics. The
presentation is organized in two parts. Section 4.1 tries answer RQ1
and Section 4.2 tries to answer RQ2.

Initially, projects were divided into three categories, small
projects (more than 999LOC and less than 20KLOC), medium
projects (between 20KLOC and 100KLOC) and big projects (more
than 100KLOC), some projects can be in more than one category
because they can have one version with less than 20KLOC and an-
other version with more than 20KLOC. Table 1 presents some gen-
eral size metrics for the projects we have downloaded. This study
analyzed 2103 project in total, but only 1523 are considered con-
current and only 364 use the j.u.c. library. The number of projects
that use j.u.c. is lower than we expected, since we only got projects
whose latest update occurred after the release of j.u.c. as part of
the JDK. Moreover, this library had been available for general use
for at least five years before it was incorporated into the JDK. The
largest project we have analyzed is the Liferay Portal9, with about
1.7 million LoC, followed by Rental Portal 10, with about 1.5 mil-
lion LoC. The smallest project we analyzed is Gomoku 11, with
exactly 1000 lines of Java code. Note that the concurrent projects
are, on the average, considerably larger than the non-concurrent
ones. This is expected: most complex projects involve concurrency
at some level.

4.1 How Often the Java Concurrency Constructs are
Employed in Real Applications?

This section presents the results summarized in Table 3 for the ba-
sic java concurrency control mechanisms divided into categories
according to size projects. Table 2 presents general results, like the
number of implementations of Runnable, the number of classes
extending Thread and the number of Thread methods invocations.
We also count the number of synchronized blocks and methods.
We collected the metrics for the concurrent projects, considering
all the versions of each one. These results only account for projects

9 http://www.liferay.com
10 http://sourceforge.net/projects/rentalportal/
11 http://gomoku.sourceforge.net

#Projecs 2.103
#Concurrent small projects 000
#Non concurrent small projects 000
#Concurrent medium projects 635
#Non concurrent medium projects 667
#Concurrent big projects 000
#Non concurrent big projects 000
#Concurrent projects that use java.util.concurrent 364
#Non concurrent projects 593
of LoC (all versions of all small projects) 60.137.100
of LoC (all versions of all medium projects) 212.677.935
of LoC (all versions of all big projects) 286.429.352
Size on disk (all versions of all projects) 124GB

Table 1. General information about the projects.

whose value in each metric is at least 1. Otherwise, for some met-
rics, many of the results would be 0. To avoid confusion, the last
column of the table also presents the number of projects whose
value for the metric is greater than 0. These results are depicted
below. The complete results of the study are available on the web-
site [23].

Synchronized modifier. We broke the analysis for these con-
structs in two, based on its two forms. Synchronized blocks are
present in 651 of 957 small projects, 512 of 582 medium projects
and 184 of 191 big projects. The standard deviation for synchro-
nized block is 21.61, 67.46 and 191.97 respectively. This indicates
that there is a small number of projects that have a strong impact
on the overall results. For example, there is a single project that
uses synchronized blocks 1401 times. This is a recurring phe-
nomenon. Most of the metrics have a standard deviation higher than
the mean. Complementarily, synchronized methods are present
in 88% of small projects, 96,21% of medium projects and 99,47%
of big projects which indicates that almost all big projects use
synchronized methods.

Thread and Runnable. We have collected two metrics pertain-
ing to the Thread class: number of classes extending Thread and
number of calls to Thread methods. We can see that 62,19% of the
medium projects and 75,91% of the big projects extend Thread,
small projects only 40% extend Thread. More than 88% of small
projects invoke Thread methods and almost 100% of medium and
big projects invoke Thread. We have also measured the number
of classes that implement the Runnable interface. This is useful to
discover which approach developers prefer, in order to create new
threads. In accordance with our intuition, implementing Runnable
is the most popular approach, with higher median, mean, and 3rd
quartile.

Imports of j.u.c. We collected this metric by counting the num-
ber of import clauses for the j.u.c. package and its subpackages.
Overall, 130 out of 957 small projects, 146 out of 582 medium
projects and 85 out of 191 big projects are using the library. At the
same time, the projects that do employ these solutions do so fairly
frequently. If the number of imports is any indication, the 3rd quar-
tile is higher than median of the # of synchronized blocks, except
for big projects.

Atomic data types and concurrent collections. Contrary to
our intuition, few projects employ atomic data types, 3.55% of
small projects, 11,10% of medium projects and 23% of big projects.
We assumed that these constructs would be more widespread due
to their ease of use and great similarity with their non-thread-safe
counterparts. On the other hand 6,47% of small projects, 15,29%
of medium projects and 29,84% of big projects use concurrent
collections.

metrics Min. 1st Qua. Median Mean 3rd Qua. Max. Std. Dev. #Projects
synchronized blocks 1/1/1 2/5/14 5/15/54 11.53/41.48/123.7 12/44/156.5 325/482/1401 21.64/67.46/191.97 651/512/184
synchronized methods 1/1/1 3/7.75/39 6/25/93 13.62/52.62/158.5 15/61/190 196/677/1058 20.54/75.55/191.94 846/560/190
classes extending Thread 1/1/1 1/1/3 2/3/6 2.57/5.19/9.93 3/6.75/12 12/65/59 2.27/6.55/12.04 390/362/145
uses of Thread methods 1/1/1 4/13/37 8/29/94 15.75/56.49/290.6 18/63/197 380/1186/23724 24.89/98.27/1739.48 851/571/187
implementing Runnable 1/1/1 1/2/3 2/3/6 3.04/6.78/13.41 4/7/15 40/83/114 3.82/10.61/17.98 420/378/160

Table 2. Projects metricts by categories (small/medium/big projects, respectively), for basic Java concurrency control mechanisms, consid-
ering only concurrent projects. This table includes metrics for mutual exclusion based on synchronized blocks and basic use of threads.

metrics Min. 1st Qua. Median Mean 3rd Qua. Max. Std. Dev. #Projects
imports of j.u.c 1/ 1/ 1 2/ 3/ 4 4/ 10/ 13 8.32/ 26.95/ 46.55 9/ 29.75/ 49 79/ 453/ 520 11.75/ 53.55/ 84.04 130/ 146/ 85
Atomic data types 1/ 1/ 1 1/ 2/ 3 2/ 4/ 6 3.05/ 9.92/ 15.82 4/ 6/ 19.50 11/ 79/ 98 2.81/ 17.53/ 21.37 34/ 65/ 44
Concurrent collections 1/ 1/ 1 1/ 2/ 2 2/ 4/ 4 3.17/ 7.57/ 13.02 4/ 7/ 14 14/ 72/ 117 3/ 11.37/ 21.40 62/ 89/ 57
Locks 1/ 1/ 1 1/ 1/ 2 1/ 2.5/ 4 2.47/ 7.59/ 7.16 2/ 8/ 8.75 23/ 156/ 52 3.79/ 18.55/ 8.91 36/ 76/ 50
Barriers 1/ 1/ 1 1/ 1/ 1 3/ 2/ 2 3.16/ 8.07/ 14.5 4.5/ 5/ 22.5 7/ 72/ 83 2.16/ 15.82/ 21.47 12/ 27/ 28
Futures 1/ 1/ 1 1/ 1/ 1 2/ 2/ 2 2.85/ 3.5/ 3 4/ 4.25/ 4 11/ 12/ 10 2.53/ 3.32/ 2.32 20/ 36/ 24

Table 3. Projects metricts by categories (small/medium/big projects, respectively), for concurrency abstractions that the j.u.c. library
implements.

4.2 Are developers transitioning to multicore?
This section presents the studied data from a temporal perspective.
It is important to notice this question is extremely complex and part
of the effort of this paper is to start to answer it therefore, we have
analyzed a small number of systems to gather information that will
provide us insight about the answer . We have broken this question
into three more:

• During software evolution.
• Have threads been used for concurrency or parallelism?
• Are developers wasting opportunities to use j.u.c.?

4.2.1 The most common use/evolution of concurrent
constructs.

Concurrent constructs are used in many different ways, although,
most of the concurrency effort is to lock and to release resources.
To that end, basic constructs like the synchronized keyword,
can often be safely retrofitted to high level libraries, like j.u.c.,
providing more flexibility. Figure 2 synthesizes the code evolution
for three projects (due page limits, others results are present only
on website), comparing the use of synchronized.

We can observe many differences among the projects. JMon-
keyEngine, for example, uses j.u.c. since its first analyzed version,
but, only in version 2.1 the number of j.u.c had extraordinarily in-
creased. At the same time, the use of synchronized did not de-
crease. A quick investigation of the source code reveals that about
40% of the j.u.c constructs are present in test case classes. Looking
forward, this behavior is very common in open source projects, in-
cluding three of the six projects that we have analyzed. The use of
the Executors and ExecutorService during the test execution
revealed a new behavior on software developers. It is interesting to
mention this because, despite the large number of testing frame-
works, programmers still prefer to use j.u.c. constructs to conduct
some testing activities.

We can also observe that the Fura project showed a different
pattern. The use of synchronized nearly doubled from one ver-
sion to another. The same happened to the lines of code from the
first to last version.

Finally, the last project reveals yet another pattern. The use of
synchronized methods and blocks decreased and the use of j.u.c
increased. In the Backport source code we can find and compare
this fact. For example, it is very common to identify methods that,
in an early version used the synchronized keyword and in the
next one use the Lock and ReentrantLock classes. Backport is

the project that takes more advantage of j.u.c. constructs, which
can be verified comparing the number of uses of j.u.c per lines of
code.

Moreover, analysing data structures, it is interesting to notice
that the use of HashTable decreased along all the projects ver-
sions while HashMap and concurrent collections increased. This in-
formation leads us to believe those programmers are aware about
the inefficiency of HashTable and have chosen other collections to
increase application performance, which can be an indication that
they are worried about the transition to multicore.

4.2.2 Threads for concurrency or threads for parallelism?
Since threads are a general purpose construct that can be use for
anything, it is very difficult to understand with what intention
would a programmer use that. Due this fact, we can sort threads
into two initial groups: threads that handles I/O operations (like
read/write operations, network input/output, database access, etc.),
and threads that perform computationally expensive operation (like
mathematical calculations, graphics rendering, search/sorting algo-
rithms, etc).

The selection of these groups are related to the fact of appli-
cations that use threads to accomplish simultaneous operations are
not necessarily related to parallelism. This is because threads can
waste resources (eg. I/O) but, at the same time, do not use CPU. In
turn, the second group are directly related to multicore transition.
Thus, the main goal here is to compare the growth of the second
group with regard to the first one.

In every project it is possible to visualize the existence of these
groups. However, to map all occurrences requires more detailed
work. To this initial report, we identified which projects have more
threads for parallelism, which was done just following theses steps:
i) For each project, seek thread constructs in source code by search-
ing in Eclipse IDE; ii) Try to understand what that code does, and
mark with concurrent or parallel; iii) Do the same with the others
versions. As result, we consider Backports and Lucene as project
that does more use of parallelism. Particulary, Lucene is a project
that cares about parallelism since its first version that we analyzed.
This is stated at block comments, method and class names, and so
on. Figure 3 shows an example using the ParallelTask class.

What exactly did the study do to answer this question?
Tomcat is a project that takes much advantage of threads and

concurrency in general, as expected (remember that we are only
considering the subproject called Catalina). Nevertheless, its use
of threads is weakly associated with parallelism, due the fact of

Figure 2. Synchronized use versus j.u.c. use

1 private class ParallelTask extends Thread {
2 @Override
3 public void run() { try {
4 int n = task.runAndMaybeStats(letChildReport);
5 if (anyExhaustibleTasks) {
6 updateExhausted(task); }
7 count += n;
8 } catch (NoMoreDataException e) {
9 exhausted = true; } catch (Exception e) {

10 throw new RuntimeException(e); } } }

Figure 3. An example of threads for parallelism in Lucene.

Tomcat is an application service, and much of its work is to handle
HTTP requests and responses, or socket comunications.

Finally, we notice that, although Java programming language
does not have any default construct to perform parallelism, threads
have been successfully applied to this end, and as noticed in the
investigated projects, it is not difficult to understant which case it
was applied.

4.2.3 Are Developers Wasting Opportunities to use j.u.c.?
One of our questions is whether developers are using high-level
libraries, like j.u.c, to make the transition to multicore. One of
the basic assumptions of this study is that it is better to use high-
level mechanisms than low-level ones. Besides abstraction, the for-
mer have more concrete advantages, such as the impossibility of
deadlocks and some performance optimizations. In addition, they
simplify the task of programming by promoting reuse of recur-
ring solutions. Therefore, considering that only a limited number of
projects use the j.u.c. library, it makes sense to ask whether devel-
opers are wasting opportunities to reap the benefits of this library.
To answer this question, we randomly have chosen 100 projects out
of all the 1523 concurrent projects. For each one, we have randomly
collected 1–3 examples of the use of the synchronized keyword
in these projects. For each example, we have analyzed the use of
synchronized in that block or method to see if it would be fea-
sible to replace it by concurrent collections or atomic data types.
We have built simple tools to randomly select the projects and to
randomly choose the synchronized blocks or methods. Due to
this, we manually inspected the code snippets to check if the se-
lected block or method could be replaced by the use of concurrent
collections or atomic variables. Dig et al. [7] present a list of code
templates that would be easily replaced by uses of atomic data types
to remove the synchronized keyword. That list served as a basis
for the manual inspection.

We analyzed 276 examples synchronized usage. Some sys-
tems had fewer than 3 occurrences of synchronized and, in these
cases, we selected every one of them. We found 28 cases where
the use of synchronized could be avoided in 25 projects. For
these cases, statements within synchronized methods or blocks

1 public synchronized void atualiza(long tempoPassado) {
2 if (frames.size() > 1) { tempoAnim += tempoPassado;
3 if (tempoAnim >= tempoTotal) {
4 tempoAnim = tempoAnim % tempoTotal;
5 frameAtual = 0; }
6 while(tempoAnim>((Integer)(tempos.get(frameAtual))).intValue()) {
7 frameAtual++; } } }

Figure 4. Project: javagamelibrary Class : Animacao

1 ...
2 private static int s lastRequest = 0;
3 ...
4 public static synchronized int getNextSequenceNumber() {
5 return s lastRequest++; }

Figure 5. Project: Opensubsystems, Class :GlobalSequence

were very simple. Thus, the use of synchronized could be eas-
ily avoided with concurrent collections or atomic data types. It is
noteworthy that 40% of these projects already use j.u.c. somehow.
We noticed that, in most cases, the synchronized keyword cannot
be removed because of the complexity of the operations. Figure 4
presents an illustrative example involving accesses to many vari-
ables. In this scenario, it is difficult to determine whether atomic
data types and concurrent collections would be useful. It would re-
quire in-depth knowledge about the application and about concur-
rency control mechanisms.

Figure 5 presents an example where it is easy to remove
the synchronized keyword and use an atomic data type. One
could change the type of variable s lastResquest from int
to AtomicInteger. It would then be possible to remove the
synchronized modifier. Instead of using the increment (++) oper-
ator for variable s lastRequest, one should use the getAndIncrement()
method. The latter works as a thread-safe increment operator for
atomic integers.

This is a simplistic approach (the on adopted by Dig et al.) A
more reasonable one would be involve tracking uses of the shared
variables.

5. Limitations and Threats to Validity
In a study such as this, there are always many limitations. Firstly,
to download the source code of the projects, we assumed that the
sources were packaged in a file with the keywords “src” or “source”
in its name. This is common practice in open source reposito-
ries. Nonetheless, it is not a rule and some projects are bound to
adopt different naming conventions. We have ignored such projects.
Moreover, we assume that most of the projects contain either ver-
sions or subprojects in each directory. However, a small number of
projects contain both in the same directory. It is difficult to infer
this automatically if no conventions are followed or if the conven-

tions are unknown. Hence, it is possible that some of subprojects
were analyzed as versions of the main project and some versions
were analyzed as subprojects. We stress that previous studies with
similar scope [11] do not address this issue and may exhibit a much
larger bias as a consequence.

Accuracy of measurement represents another threat to validity.
Due to the large number of complex projects, it is impossible to
automatically resolve all the dependencies on external libraries.
As a consequence, we have to rely on purely syntactic analysis.
This is sufficient to measure occurrences of synchronized and
uses of monitor-based synchronization. However, to accurately col-
lect some of the metrics, type information is necessary. To verify
whether this purely syntactic approach would produce too many
false positives, we have manually inspected samples comprising
100 randomly-selected projects. We did not find any metric for
which more than 2% of the projects exhibited false positives.

6. Related Work
To the best of our knowledge, there are no large-scale studies that
have attempted to gather data pertaining to the use of the concur-
rency constructs available in a programming language in the con-
struction of real-world systems. Howison et al. [13] made a col-
laborative data and analysis repository, called FLOSSMole. It was
designed to gather, share, and store comparable data and analysis
of open-source projects. The major difference of our study from
this approach is that it gathers project metadata (e.g. project top-
ics), whereas we collect and analyze information at the source
code level. Grechanik et al. [11] collected and analyzed the data at
the source code level of OSS projects in large repositories. They
described an infrastructure for conducting empirical research in
source code artifacts and obtained insight into over 2,080 Java
applications. While they randomly chose those java applications
to study, we focus on mature, stable, and recently updated Java
projects. This previous study analyzed only basic Java constructs
and does not focus on any specific software characteristic. Ba-
jracharya et al. [3] statically analyzed 2.852 java projects using
SourcererDB, an aggregated repository of statically analyzed and
cross-linked open-source Java projects. This work differs from ours
because it does not focus on concurrent applications and performs
only lexical analysis of source code.

These previous studies complement ours because they have ex-
amined the documentation of the processes that developers follow
to build concurrent systems. On the other hand, our study investi-
gates the products of these processes, the actual concurrent systems
and try to answer if java programmers are transitioning to multi-
core. In addition, we can work at a much larger scale, because we
analyze artifacts that were written in a programming language.

Dig et al. [2] analyzed five open source projects, including
apache tomcat, and presented some metrics such as the number
of synchronized blocks. Although we also have studied apache
tomcat, unfortunately it was not possible to reproduce the results
obtained by them, and the values do not match with ours. Even
make a text search in the tomcat source code, the values found was
much smaller than they showed in their paper.

7. Concluding Remarks and Future Work
This paper presents an empirical study of a large-scale Java open
source repository. We found out that developers employ mainly
simple mutual exclusion constructs. Almost 88% of the concur-
rent projects include at least one synchronized method. At the
same time, approximately 27% of the projects employ higher level
abstractions implemented by the j.u.c. library. We have noticed a
tendency, albeit weak, of growth in the use of the j.u.c. library.

This study has revealed many opportunities for researchers
working on program reestructuring approaches. We have identified
that developers waste a large number of opportunities to use high
level constructs for concurrent programming, in favor of lower-
level, more error-prone constructs.

We also intend to investigate the organization of concurrency
code in the analyzed projects. To achieve this goal, we will employ
a number of metrics that aim to quantify tangling and scattering
of code pertaining to specific concerns. Furthermore, we intend to
analyze more specific issues. One that holds particular interest for
us is the extent to which exception handling constructs complicate
concurrent/parallel programming.

References
[1] Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.
[2] Danny Dig, John Marrero, Michael D. Ernst. How do Programs

Become More concurrent? A Story of Program Transformations. In
International Workshop on Multicore Software Engineering, Hawai,
USA, 2011.

[3] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An
internet-scale software repository. In Proceedings of the 2009 ICSE
Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation, pages 1–4, 2009.

[4] A. Bernstein and A. Bachmann. When process data quality affects
the number of bugs: correlations in software engineering datasets. In
MSR’2010, Cape Town, South Africa, May 2010.

[5] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Con-
current programming with revisions and isolation types. In Proceed-
ings of OOPSLA’2010, Reno, USA, October 2010.

[6] David R. Butenhof. Programming with POSIX Threads. Addison-
Wesley, 1997.

[7] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequen-
tial java code for concurrency via concurrent libraries. In Proceedings
of the 31st International Conference on Software Engineering, pages
397–407, Vancouver, Canada, 2009.

[8] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho.
Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng.,
34:497–515, July 2008.

[9] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues.
A study of the internal and external effects of concurrency bugs. In
Proceedings of DSN’2010, Hong Kong, China, June 2010.

[10] Alessandro Garcia, Claudio SantAnna, Eduardo Figueiredo, Uira
Kulesza, Carlos Jose Pereira de Lucena, and Arndt von Staa. Modular-
izing design patterns with aspects: A quantitative study. In Proceed-
ings of the 4th ACM Conference on Aspect-Oriented Software Devel-
opment, pages 3–14, Chicago, USA, March 2005.

[11] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi,
Stefano Crespi, Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo
Ghezzi. An empirical investigation into a large-scale java open source
code repository. In Proceedings of the 4th International Symposium on
Empirical Software Engineering and Measurement, Bolzano-Bozen,
Italy, September 2010.

[12] Maurice Herlihy. Linearizability. In Encyclopedia of Algorithms.
Springer-Verlag, 2008.

[13] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collabo-
rative repository for floss research data and analyses. International
Journal of Information Technology and WebEngineering, 1(3):17–26,
July 2006.

[14] Ross Ihaka and Robert Gentleman. R: A language for data analysis
and graphics. Journal Of Computational And Graphical Statistics,
5(3):299–314, 1996.

[15] M. G. Kendall. A new measure of rank correlation. Biometrika, June,
1938.

[16] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard,
Peter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett

Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng., 28(8):721–734, August 2002.

[17] James Larus and Christos Kozyrakis. Transactional memory. Com-
mun. ACM, 51(7):80–88, July 2008.

[18] Doug Lea. The java.util.concurrent synchronizer framework. Sci.
Comput. Program., 58(3):293–309, 2005.

[19] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: an empirical study of
bug characteristics in modern open source software. In Proceedings of
the 1st workshop on Architectural and system support for improving
software dependability, pages 25–33, 2006.

[20] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: a comprehensive study on real world concurrency bug
characteristics. SIGOPS Oper. Syst. Rev., 42(2):329–339, March 2008.

[21] Joel Ossher, Sushil Krishna Bajracharya, and Cristina Videira Lopes.
Automated dependency resolution for open source software. In Pro-
ceedings of the 7th International Working Conference on Mining Soft-
ware Repositories, pages 130–140, Cape Town, South Africa, May
2010.

[22] Dag I. K. Sjoberg, Tore Dyba, and Magne Jorgensen. The future of
empirical methods in software engineering research. In Proceedings
of 2007 Future of Software Engineering, pages 358–378, 2007.

[23] W. Torres, G. Pinto, B. Fernandes, J. Oliveira, F. Ximenes
and F. Castor. How do programmers use concurrency?
http://www.cin.ufpe.br/ ghlp, Steptember, 2011.

[24] Herb Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), August 2005.

[25] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy.
Power4 system microarchitecture. IBM Journal of Research and Dev.,
46(1):5–25, January 2002.

	Introduction
	Study Setting
	Context
	Infrastructure

	Research Questions
	How Often are the Java Concurrency Constructs Employed in Real Applications?
	Are Programmers Aware of Evolution/Transition from Singlecore to Multicore?

	Study Results
	How Often the Java Concurrency Constructs are Employed in Real Applications?
	Are developers transitioning to multicore?
	The most common use/evolution of concurrent constructs.
	Threads for concurrency or threads for parallelism?
	Are Developers Wasting Opportunities to use j.u.c.?

	Limitations and Threats to Validity
	Related Work
	Concluding Remarks and Future Work

