What Programmers Say About Refactoring Tools?

An Empirical Investigation of Stack Overflow

Gustavo Pinto

Federal University of Pernambuco
ghlp@cin.ufpe.br

Abstract

Programmers often use forums, such as StackOverflow, to easily
and quickly solve their issues. Researchers then investigate those
questions to better understand the state-of-use of software engi-
neering techniques. Also, due to the quality and the great number
questions and answers, the results found using such method might
be difficult, or even impossible, to find using common survey tech-
niques. In this study, we conducted a qualitative and quantitative
research in order to categorize questions about refactoring tools. As
a result, we presented a comprehensive classification of flaws and
desirable features in refactoring tools. We also reported that pro-
grammers do not often rely on refactoring tools, but, at the same
time, they are desiring number of unimplemented features.

Categories and Subject Descriptors D.2.3 [[Software Engineer-
ing]]: Coding Tools and Techniques

Keywords Refactoring tools, Programming Knowledge, Question-
Answer Websites

1. Introduction

Stack Overflow is the most popular forum in the software develop-
ment world, and it is a rapidly growing base of information about
topics ranging from programming languages to algorithms. It con-
tains over 1.5 million users and more than 4.5 million questions,
and its data could be easily accessed through an open backup [1].
In Stack Overflow, users can post questions and obtain replies for
it. The own community is responsible of assuring the quality of the
questions and answers: if a question is good enough, users “up-
vote” the question; if not, they “downvote” it. Users that created
those questions receive these “reputation points”. That is, building
reputation within the community is a key motivator for contributing
to Stack Overflow, and contributors’ reputations are quantified by
scores based on their answers to questions posted on Stack Over-
flow. Thus, the reliability of the question/answer could be directly
associated to the user who have created it.

Moreover, using Stack Overflow, we avoid common survey
problems. In them, the subject may lie in a difficult questions,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

WRT ’13, October 27, 2013, Indianapolis, Indiana, USA.

Copyright © 2013 ACM 978-1-4503-2604-9/13/10. .. $15.00.
http://dx.doi.org/10.1145/2541348.2541357

Fernando Kamei

Federal University of Pernambuco
Federal Institute of Sertdo Pernambucano

fkk@cin.ufpe.br

or may remember incorrectly about a long time question, or may
not fully understand a question and then give a faulty response.
Using Stack Overflow, we also have a higher number of subjects
(more than 1,000 subjects), and the quality of the data might also
be more reliable, because the subject will work hard to write a
good question/answer. Otherwise, (s)he will be downvoted. With
this data on hand, researchers can take the opportunity to mine
countless questions about the state-of-use of the existing process,
techniques and tools in the software engineering field.

Modern refactoring tools provide rich sets of functionality,
which basically promise two benefits: First, refactoring tools
promise to preserve functionality. Second, the tools promise to
refactor faster than a programmer can refactor by hand. In that
sense, the use of refactoring tools should increase the program-
mer productivity. Nonetheless, previous works have reported that
programmers are underusing such tools [8, 9]. At the same time,
researchers and tool vendors tend to propose new refactoring fea-
tures. However, little is known about the features that application
programmers are willing to use. Thus, Stack Overflow might prove
a suitable candidate for exploring questions regarding refactoring
tools, since building a refactoring tool that programmers want to
use is hard.

In this sense, this paper presents an empirical study of questions
and answers related to refactoring tools, created on Stack Overflow.
We analyzed more than 1,400 messages — 324 questions and 1,115
answers to those questions — from more than 1,200 users, to un-
cover a number a issues regarding these tools. We translate this
knowledge in to four research questions:

RQ1: What are the most desirable features in refactoring
tools? Our qualitative analysis identified four groups of desirable
features that are commonly discussed in Stack Overflow. These
features include: (i) refactoring recommendations, (ii) refactoring
for dynamic languages, (iii) refactoring for databases, and (iv)
multi-language refactoring. We also noticed that programmers are
willing to use these features, but, at the same time, some barriers
are hindering the use.

RQ2: What are the barriers to adoption of refactoring
tools? We have found out a number of barriers that are preventing
the use of refactoring tools. Usability problems — such as difficult
to select the code, and unknown error messages — are the most se-
rious. Nonetheless, some users also reported a lack of trust in these
tools. We then discuss some strategies as an attempt to fill this gap.

RQ3: How is interest in refactoring tools related to pro-
grammer expertise? As expected, questions come from novices
(39.18% of it) and answers from hackers (40.44% of it). Moreover,
the number of questions increases up to the reputation reaches the
middle group (value 1K — 10K), and then starts to decrease. The
answers to these questions, however, increase with the increase in
reputation, up to the reputation reaches the last group (> 100K).

RQ4: Does interest in refactoring tools increase over the
years? Not as expected. We have found out that the number of the
questions are fairly the same when compared to the firsts months
of Stack Overflow. However, the number of answers per questions
can vary greatly, including some periods with 3 times more answers
than others.

The rest of the paper is organized as follow: Section 2 presents
some related work. Section 3 describes our study setup: the re-
search questions (Section 3.1) and the data analyzed (Section 3.2).
Next, in Section 4 we present our results. Finally, in Section 5, we
conclude the work and present future directions.

2. Related Work

During the last decade, many studies have been proposed to under-
stand the programmers’ interest in refactoring tools [3, 6, 7, 9].

Erb [3] concluded that the existing refactoring tools are imma-
ture, when compared to others transformation tools that need to
preserve behavior, such as optimizing compilers. This fact is di-
rectly associated with the usability problem that programmers are
addressing. Mens [0] identified some features that programmers
are willing to use. However, they also conclude that some tools do
not guarantee that the program behaviour will be preserved, which
can be a serious problem for its adoption. Moreover, Hill and col-
leagues [9] found that, although floss refactoring is more used than
root canal refactoring, the overall use of refactoring tools is under-
used. In a similar study, the same author asked 16 object-oriented
programming students whether they had used refactoring tools —
only two said they had, reporting using them only 20% and 60% of
the time [7].

Nonetheless, to the best of our knowledge, there are no study
on the literature that try to understand the state-of-use of refactor-
ing tools from a large body of subjects. Moreover, this work differs
from the state of the art mainly because we identified new refactor-
ing features that programmers are willing to use, as well as some
barriers to adoption. Also we observed that this topic is receiving
great attention during the years.

3. Study Setup

This section presents our study setup.

3.1 Research Questions

In this paper, we extracted Stack Overflow data to uncover ques-
tions about the state-of-use of refactoring tools. The goal of this
work is to answer the following four research questions:

e RQ1: What are the most desirable features in refactoring tools?
e RQ2: What are the barriers to adoption of refactoring tools?

e RQ3: How is interest in refactoring tools related to programmer
expertise?

¢ RQ4: Does interest in refactoring tools increase over the years?

To achieve our goal, we semi-automatically extracted questions
related to the subject. We then investigate the selected data using
qualitative methods. Next we consider the member reputation to
observe its association with the our data. We also present some sta-
tistical correlations. Finally, we consider how this information can
help the research and practice of software engineering to improve
the use of refactoring tools. In the follow section, we explain issues
that need to be addressed when considering explore such database.

3.2 The Data that We Analyzed

The work described in this paper is based on the data dump of the
main Stack Overflow website, which consists of nearly 40GB of

text file logs from July 31, 2008 to July 31, 2102 [1]. All the data is
freely available under Creative Commons license. In this data, it is
possible to find questions, answers, and the users that have created
those data, among others informations. Within this time frame, over
3.4 million questions were created, and 6.8 million answers were
provided. We parse this data line by line and extracted individual
questions — and their answers — associated with questions about
refactoring tools. This data is loaded into a single database table,
indexed by user id, the question, the answers of the questions, and
ordered by timestamp.

To filter only the related data, we firstly selected questions that
had the words “refactoring” and “tool” in the body, or in the subject,
or in the tag name. Thus, an example of valid question is one that
might have the “refactoring” word in the subject, and “tool” word
on the body. After this process, we observed that a high number
of false positive questions remained in the data. A false positive
question is, for example, a questions which was created by a user
that is interested in a particular refactoring approach to use in
his own fool. Thus, to eliminate the false positive questions, we
manually analyzed each two times (one time by each author). At the
end of the first extraction process, a total of 754 questions and 2,637
answers were found. After the second extraction phase, a total of
324 questions and 1,115 answers were selected. Hereafter in this
study, we only considered the latter group.

4. Study Results

This section presents our findings. We organize the results in terms
of the research questions.

4.1 RQ1: What are the most desirable features in refactoring
tools?

Our qualitative analysis identified the following four groups of
desirable features. It is worth to notice that some features are
already implemented in wide-spread tools, and/or have already
been proposed as a research topic. But, in a sort of programming
languages, such as dynamic languages, these features are not fully
available or, otherwise, they are available in only commercial tools.
We then list these features in order of interest.

1. Refactoring for dynamic languages. Dynamic languages
play an increasingly prominent role in modern software develop-
ment. They are used in domains as diverse as web programming
and scientific computing, for developing simple scripts as well as
large applications. However, as pointed by Schéfer [1 1], specifying
and implementing refactorings for dynamic languages is a chal-
lenging endeavor. We found out 78 questions (24% of the total) re-
lated to refactoring for for dynamic languages. These languages are
PHP, JavaScript, Python, Ruby, Groovy, R, Perl, and Matlab. How-
ever, most of these questions are a variation of “What refactoring
tools do you use for language X?”, and the answers often suggest
the use of well-known IDEs, such as Netbeans and Eclipse, such as
the following question:

Question: [...] So, is anyone aware of any php refactoring
tools that allow you to determine state modifications and
side effects of a particular piece of code (including new
references to variables which may be stored as members and
modified later). [...]"

Nonetheless, tools to support for these languages are fair new,
and often unable to ensure that program behavior will be pre-
served [4]. Moreover, often programmers that use these languages
rely on command line editors, such as vi or emacs, which make the
refactoring support much more difficult.

Uhttp://stackoverflow.com/questions/581292/does-anyone-know-of-any-
good-php-analysis-refactoring-tools

II. Refactoring recommendations. Refactoring tools often as-
sume that a programmer already knows how to refactor and is fa-
miliar with the catalog of refactorings [5]. Nonetheless, it is not
necessarily true. There are cases where the programmer is not able
to identify a refactoring opportunity, whether by lack of knowl-
edge in refactoring, or by lack of understanding the legacy code.
We have found out that refactoring recommendations is one of the
feature that most of Stack Overflow users desire (13% of them). It
is also possible to group these features into groups: (i) highlight du-
plicate or dead code, (ii) highlight code smells (using metrics such
cyclomatic complexity or LoC as back up) (iii) highlight optimiza-
tion opportunities. Moreover, in minor scale, we also observe that
well-known refactorings might be suggested, as pointed out by the
following question.

Question: [...] I would prefer a tool that just makes sug-
gestions about possible refactorings: names the refactoring,
optionally provides a short description of it (great for learn-
ing purposes), highlights the code section and lets me do the
refactoring myself. [...] 2

Nonetheless, part of this work was done by Weissgerber [12],
but there is an ample room of improvements.

II1. Refactoring for Databases. Refactoring tools for databases,
in general, and for SQL, in particular, is fairly common in Stack
Overflow. We found 12 questions related to the subject. The refac-
toring approaches mentioned are: (i) automatic simplification of
SQL, (ii) refactoring table or views structure, and (iii) fixing sql
vulnerabilities. We observe that, some of the desirable features are
covered by well-known SQL tools. However, there are a lack of
tools for refactoring object-relational mapping frameworks, as well
as for NoSQL databases.

IV. Multi-language Refactoring. Most of the automated refac-
toring tools only work in a single programming language. However,
an increasing number of programmers rely on polyglot program-
ming as a way to build more complex systems. We have observed
an increasing tendency in the amount of questions related to multi-
language refactoring. We found a total of 9 questions, and 73% of
them were created between the years of 2010 and 2012. Nonethe-
less, most of these questions were not answered appropriately. For
example, the following comments are vague and unclear:

Question: Is there a way to convert Groovy to Java automat-
ically? [...] I have tried to manually convert some pieces to
Java, it’s been a pain. Are you aware of any tools or plugins
that help with this conversion? >

Answer X: I found and alternate solution, using Groovy++.
It has almost all the advantages of Groovy, but with perfor-
mance and strong typing from Java.

Answer Y: My top tip is write lots of unit tests.

Answer Z: I would focus on becoming more comfortable
with Groovy instead of trying to convert the code to Java

One of the reason for these misunderstanding, is that refactor-
ing for multi-language is much more difficult and would be even
more onerous than refactorings in the same language [2]. Another
important point is the existing gap in refactoring tools to support
this activity. This fact poses a challenge not only for researchers in
the academia, but to practitioners in the industry as well.

Covering all these different features in detail is out of the scope
of this paper. However, a comprehensive and historical review of

2 http://stackoverflow.com/questions/785667/python-tool-that-suggests-
refactorings

3 http://stackoverflow.com/questions/5302103/is-there-a-way-to-convert-
groovy-to-java-automatically

the subject has been conducted Prez and Crespo [10]. The authors
model the current state of the art and identify open challenges,
current trends and further research opportunities.

4.2 RQ2: What are the barriers to adoption of refactoring
tools?

There is a strong belief in the academia that programmers are not
using refactoring tools as much as they could [8, 9], and exper-
iments were conducted as an attempt to understand this fact [7].
Some of these studies are based on personal experiences, surveys,
and controlled experiments. Results of these studies show that error
messages and usability problems are one of the key barriers in the
adoption of refactoring tools. Nonetheless, identify barriers of use
in popular forum could produce much more reliable results, since
there are an absence of external factors that could biased the ques-
tion/answer. In this section we identify and briefly describe two
significant barriers encountered by Stack Overflow users.

1. Many refactoring tools are unknown or difficult to learn
and to use. Many refactoring tools suffer from deep discoverability
problems that make them less useful for general development. A
significant number of questions are variation of “What refactoring
tool do you use to do X in language Z”. Since these questions are
fairly basic, it would be reasonable to assume that only novice
users are having problems in discover these tools. However, we
noticed that not only unexperienced users — users with reputation
between 1 and 1K - create such questions (33% of it), but even
more experienced users — reputation higher than 10K — create such
questions (9% of it).

Moreover, it is well-known that the usability of refactoring
tools is far from optimal. This is critical, because even the best
refactoring implementations are worthless if they are not used.
Some of the most common usability problems are characterized
in the following groups: (i) Human Interaction (e.g.: difficult
to manually — with mouse and keyboard — select the code to be
refactored); (ii) Productivity (e.g.: renaming locals variable can
be quicker to do it by hand); (iii) Learning Curve (e.g.: Much
time to learn); (iv) Error messages (e.g.: Lack of error messages or
not understandable errors), and (v) Resource Usage (e.g.: A large
memory footprint for a large code base).

To overcome these barriers, we suggest that refactoring tools
should follow the list of five principles that characterize a good
refactoring support [8]. Other studies have found that some refac-
toring tools tend to only partially adhere to these principles [3].

II. Lack of trust. Distrust of a tool can prevent the program-
mer from experimenting new refactorings. Moreover, some users
believe that refactoring tools will introduce bad design choices in
the code, as pointed out by a Stack Overflow user, “Some times the
tool will change the meaning of your code without you expecting it,
due to bugs in the tool or use of reflection etc in your code base.”.
Therefore, it is important to indicate what a refactoring will do be-
fore the programmer decides whether to apply it. We believe that
preview hinting can play a major role in decreasing the resistance
to applying refactorings by helping to build the programmer’s trust
for a tool. Finally, we have found out that the lack of trust could
be so high that, even if the refactor will reduce the possibility of
concurrent errors, such as atomicity violation, programmers tend to
avoid it — as one user have pointed out: “if is not good to decrease
readability in favor of atomicity”.

Finally, on top of all these barriers, programmers might not even
be familiar with the catalog of refactorings, and therefore have great
difficulties in discovering suitable refactorings.

4.3 RQ3: How is interest in refactoring tools related to
programmer expertise?

In this section we intent to discover whether only hackers talk about
refactoring tools, or otherwise if it is a wide topic with in the Stack
Overflow community. To this end, Figure 1 shows the number of
questions per user reputation.

Question and Answers per User Reputation

500
|

= Questions
- O Answers

f-ﬁﬂﬂﬂ_m

1-100 101 -1K 1K-10K 10K-100K 100K+
User Reputation

of occurrences
300
|

Figure 1. The number of question and answers per user reputation.

From the above figure we see that the number of questions
increases up to the reputation reaches the middle group (1K —
10K), and then starts to decrease. On the other hand, the answers
to these questions increase with the increment in reputation, up to
the reputation reaches the last group (100K+), which is expected.
While it is not surprising that novice users ask more questions, it
is notable that members with reputation ranging from 1K to 10K
provide the most questions and answers in Stack Overflow.

Moreover, we try to correlate the user’s reputation with ques-
tions and answers created in Stack Overflow. To analyze the effect
of the user expertise, we ran Pearson Correlation for reputation x
questions and reputation x answers. For Pearson |r| < 0.3 indicates
small correlation, 0.3 > |r| < 0.5 indicates medium correlation,
and |r| > 0.5 indicates strong correlation. First, the questions ration
(r = 0.12890) produced a small correlation with the Reputation ra-
tio, indicating that the availability of more expertise increases both
the quantity and the quality of questions. Second, the answers ratio
(r = 0.12444) produced also a small correlation, indicating that
the availability of more expertise increases the number of answers
per question.

4.4 RQ4: Does interest in refactoring tools increase over the
years?

Finally, we have analyzed whether the interest in refactoring tools is
increasing or decreasing over the years. To that end, Figure 2 shows
the number of questions, and answers to these questions created
during the analyzed period.

From the above figure we noticed that questions and answers
had different behavior. On the one hand, the number of questions
seem to be quite similar when compared with the firsts months
of Stack Overflow, with few variations. The average number of
questions per period is 19.06, with standard deviation of 6.50.
On the other hand, the number of answers per questions can vary
greatly, with some periods with 3 times more activities than others.
The average number of answers per period is 66.76, with standard
deviation of 33.29.

With a careful investigation, we realize that about 80% of the
questions have less than 5 answers, which is quite low. Nonetheless,
4.32% of these questions have more than 10 answers, which is
the reason behind this variation. Our qualitative analysis identified
the following characteristics whereby these questions receive more
attention than others: (i) question is simple and right on target;

Answers per Questions

160
140

W answers

questions

of ocurrences

AR N B LD L B S L R A L B R S A T B
[R R R e R = = = = T T B o o I o B
S 00 088 Q8 o o oo o o o oo oo
OO0 o000 DO00C00 000 00O oo
SRS I I s IR B A A O I O I T I S I I]

Figure 2. The number of questions x answers to these questions
created during the period of July 31, 2008 and July 31, 2102.

and (ii) are fairly well written and relevant. Removing these biased
questions, the standard deviation turns to be 12.89.

5. Conclusions and Further Work

In this paper, we investigated questions and answers in the Stack
Overflow community, where most questions concern technical
problems that software developers have. By comparing the list of
questions and answers, we are able to discover what are the most
desired features that programmers are willing to use and, at the
same time, we also discover a few scenarios that appear to be the
common cause for adoption barriers. Moreover, we also observed
that user with all reputation are interested in such questions, but
they are more likely to novices, and the interest in refactoring tools
seems to be the same as was in the early days of Stack Overflow.
Further work includes correlating this results with data from sur-
veys, and analyze the user emotion through sentiment analysis. We
leave these to future work.

References

[1] A. Bacchelli. Mining challenge 2013: Stack overflow. In The 10th
Working Conference on Mining Software Repositories, page to appear,
2013.

[2] N. Chen and R. Johnson. Toward refactoring in a polyglot world:
extending automated refactoring support across java and xml. In
Proceedings of the 2nd WRT, 2008.

[3] S. Erb. A survey of software refactoring tools. Technical report, 2010.

[4] A. Feldthaus and A. Mgller. Semi-automatic rename refactoring for
JavaScript. In Proc. ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, October 2013.

[5] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. ISBN 0-201-48567-2.

[6] T. Mens and T. Tourw. A survey of software refactoring. /IEEE Trans-
actions on Software Engineering, 30(2):126—139, February 2004.

[7]1 E. Murphy-hill. Improving refactoring with alternate program views.,
2006.

[8] E. Murphy-Hill and A. P. Black. Refactoring tools: Fitness for pur-
pose. IEEE Softw., 25(5):38-44, Sept. 2008. ISSN 0740-7459.

[9] E. R. Murphy-Hill and A. P. Black. Why don’t people use refactoring
tools? In Proceedings of the First WRT, pages 60-61, 2007.

[10] J. Pérez and Y. Crespo. Perspectives on automated correction of bad
smells. In Proceedings of the ERCIM, pages 99-108, 2009.

[11] M. Schifer. Refactoring tools for dynamic languages. In Proceedings
of the Fifth WRT, pages 59-62, 2012.

[12] P. Weigerber, B. Biegel, and S. Diehl. Making programmers aware of
refactorings. In Proceedings of the First WRT, pages 58-59, 2007.

	Introduction
	Related Work
	Study Setup
	Research Questions
	The Data that We Analyzed

	Study Results
	RQ1: What are the most desirable features in refactoring tools?
	RQ2: What are the barriers to adoption of refactoring tools?
	RQ3: How is interest in refactoring tools related to programmer expertise?
	RQ4: Does interest in refactoring tools increase over the years?

	Conclusions and Further Work

